

An introduction to Spatial Interaction Modelling

Dr Andy Newing School of Geography, University of Leeds

9km

- Demand
- Accessibility
- Attractiveness
- Competition (intervening opportunities)

Spatial Interaction

- Important concept in Geography
- Flows:
 - Of people (migration, commuting etc.)
 - Of money (expenditure, goods etc.)
- Interaction between origin and destination

Origins and destinations

- **Origins** are generally zonal (e.g. countries, regions, local authorities, neighbourhoods).
 - We'll typically have multiple origins within a SIM:

 i_1 i_2 i_3 etc.

- **Destinations** could be zonal (e.g. countries, regions, local authorities, neighbourhoods) or points (e.g. the location of specific services or facilities such as retail stores, schools, hospitals).
 - We'll typically have multiple destinations within a SIM:

 j_1 j_2 j_3 etc.

We use SIMs to model the interactions (flows) between origins and destinations

i ₁ to j ₁	
i ₁ to j ₂	С
i ₁ to j ₃	J ii
i ₂ to j ₁	- 1
etc.	

- The demand available in origin zone i₁
- The attractiveness of destination j₁
- The accessibility of destination j_1 to [consumers] in origin zone i_1
- Intervening opportunities the relative accessibility and attractiveness of destination j₁ to [consumers] in origin zone i₁ versus all other destinations (j₂, j₃, etc.) [Competition]

9km

In more complex terms

- SIMs are statistical models that we can use to represent origin-destination flows
- Capture the mathematical relationship which accounts for the observed interactions (flows)
- Use that relationship to:
 - estimate missing data
 - model and forecast flows under various scenarios (e.g. for planning purposes)

Early SIMs (Gravity Models)

- Captured flows or interactions based on Newtonian analogies
- Lacked robust theoretical justification in a human context
- Reilly's (1929) 'law of retail gravitation' applied the gravity concept to trade area analysis and competition between cities. Probability of a consumer shopping at a particular 'centre' – bigger centres will attract consumers from a farther distance and have a larger trade area.

https://royalsociety.org/people/alan-wilson-12528/

Entropy Maximising Models

- Early 1970s, Sir Alan Wilson demonstrated a more robust way to derive and justify gravity models using entropy maximisation (statistical mechanics).
- First applied to transport planning models.
- Provided a better theoretical justification.
- Introduced term 'Spatial Interaction Model'
- Realised potential role as a location model.
- Wide ranging applications in geography, planning, transportation, social science and the commercial sector

The Wilson family (of SIMs)

- 'Family of Spatial Interaction Models' four variants of the same model based on the scenario being modelled.
- Driven by known information which could constrain the values that interaction could take

Production-Attraction Constrained

- Also known as doubly constrained
- 'Origin' and 'Destination' totals are known

		j1	j ₂	j3	
Production	i ₁		82,000	-	£150,000
	i ₂		28,000		£50,000
	i ₃	20,000	34,000	16,000	£70,000
	İ4		64,000		£120,000
	İ ₅		12,000		£65,000
	i ₆		20,000		£55,000
	i ₇		14,000		£220,000
	i ₈		28,000		£80,000
	i ₉		18,000		£110,000
		£500,000	£300,000	£200,000	

Unconstrained

• Neither 'Origin' and 'Destination' totals are known

		j1	j ₂	j ₃	
	i ₁				
	i ₂				
	i ₃				
Production	i4				
	i ₅				
	i ₆				
	i ₇				
	i ₈				
	i ₉				

Attraction Constrained

Destination totals are known

	-		-		
		j ₁	j ₂	j ₃	
	i ₁		82,000		
	i ₂		28,000		
	i ₃		34,000		
Production	i ₄		64,000		
	i ₅		12,000		
	i ₆		20,000		
	İ7		14,000		
	i ₈		28,000		
	ig		18,000		
		£500,000	£300,000	£200,000	

Production Constrained

Origin totals are known

		j ₁	j ₂	j ₃	
	i ₁			-	£150,000
	i ₂				£50,000
	i ₃	20,000	34,000	16,000	£70,000
Production	i ₄				£120,000
	i ₅				£65,000
	i ₆				£55,000
	i ₇				£220,000
	i ₈				£80,000
	i ₉				£110,000

SIMs

- Can appear complicated at first!
- Straightforward once the basics make sense.
- For a easy to digest overview, try:
- Birkin M. and Clarke G.P. 1991. Spatial interaction in geography. *Geography Review*, 4(5), pp.16-21.
- The SIM is one of Geography/Social Science's most successful applications in the commercial world - and not just in retail.

Further Reading

- Birkin, M., Clarke, G. P. and Clarke, M. 2010. Refining and operationalising entropy-maximising models for business applications *Geographical Analysis*, **42**(4), pp.422-445.
- Newing, A., Clarke, G. P. and Clarke, M. 2014. Developing and applying a disaggregated retail location model with extended retail demand estimations. *Geographical Analysis*, **47**(3), pp.219-239
- Roy, J. R. and Thill, J.-C. 2004. Spatial interaction modelling. *Papers in Regional Science*, 83(1), pp.339-361.
- Wilson, A. G. 1971. A family of spatial interaction models, and associated developments. *Environment and Planning* 3, pp.1-32.
- Wilson, A. G. 2010. Entropy in urban and regional modelling: retrospect and prospect. *Geographical Analysis*, **42**(4), pp.364-394.

An introduction to Spatial Interaction Modelling

Dr Andy Newing School of Geography, University of Leeds

