

Reproducible Social Research

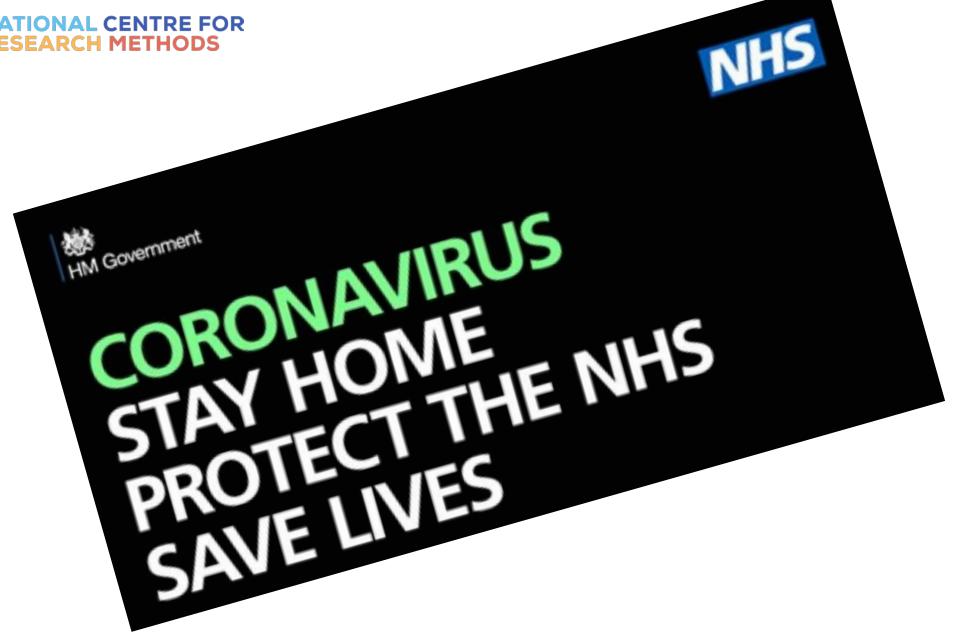
Professor Vernon Gayle

vernon.gayle@ed.ac.uk

@Profbigvern

https://github.com/vernongayle

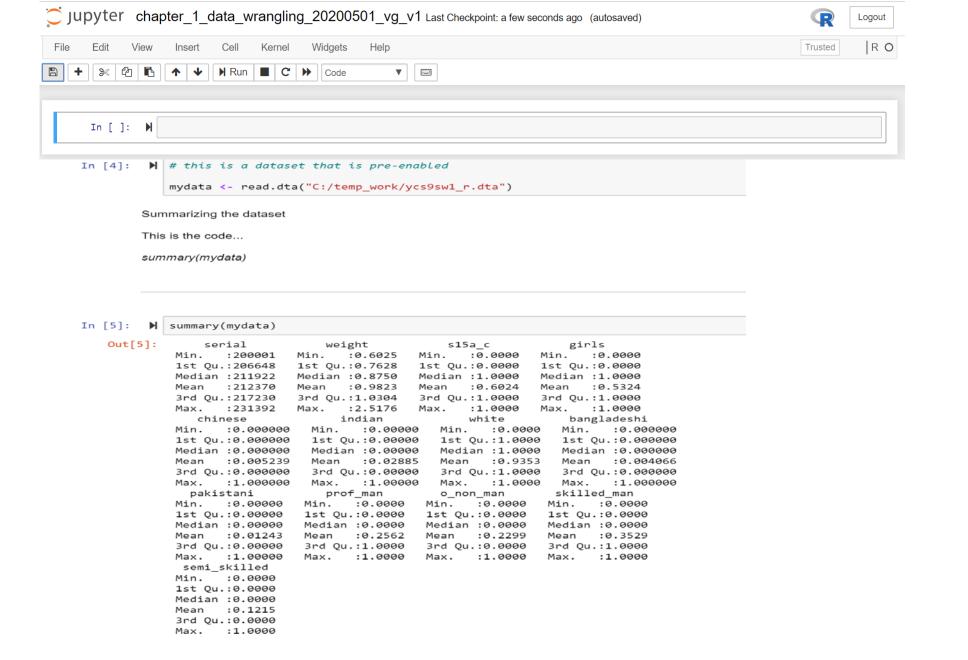
D V. Gayle



NCZY NATIONAL CENTRE FOR RESEARCH METHODS

Traditional Publication

Additional Material


JUPYTER

In [36]: n	<pre>mibeta ability male i.parented ib4.dadnssec cohort [pweight=ipw], allbaseleve * return to jupyter . mibeta ability male i.parented ib4.dadnssec cohort [pweight=ipw], allbasele</pre>								
н									
М	Multiple-imputation estimates Linear regression					ions	= 6		
						of obs	= 28,33		
						Average RVI = 0.361			
			Largest FMI = 0.436						
						Complete DF = 28			
D	F adjustment:	Small sam	ple		DF:		= 308.7		
-						avg	= 874.1		
						max	= 2,278.1		
M	Nodel F test:	Equal	FMI		F(12,	7041.2)	= 297.8		
W	Within VCE typ	e: Rob	ust				= 0.000		
_									
	ability						nf. Interval		
-	male	5529273	.179601				3200728		
	parented								
	2	5.865727	.2354561	24.91	0.000	5.403645	6.32780		
	3	8.298234	.5356372	15.49	0.000	7.246654	9.34981		
	4	10.62638	.4562337	23.29	0.000	9.730598	3 11.5221		
	dadnssec								
	1	1.787366	.5802228	3.08	0.002	.6480052	2.92672		
	2	2.279596	.5910755	3.86	0.000	1.116549	3.44264		
	3	1.190626	.4294348		0.006	.3469172	2.03433		
	5	-3.526372	.4348423	-8.11	0.000	-4.380374	4 -2.6723		
	6	-3.306138	.4132835	-8.00	0.000	-4.117849	-2.49442		
	7	-4.797451	.4256146	-11.27	0.000	-5.633624	4 -3.96127		
	8	-7.168137	.4124364	-17.38	0.000	-7.978642	2 -6.35763		
	cohort	-2.087461	.1840391	-11.34	0.000	-2.448375	5 -1.72654		
	_cons	104.0589				103.2077			

The Problem

Variable	Obs	Unique	Mean	Min	Max	Label
ahid	10264	5505	1394265	1000209	1761811	household identification number
apno	10264	7	1.642537	1	7	person number
adoid	10264	32	15.9583	-9	31	date of interview: day
adoim	10264	5	10.07258	-9	12	date of interview: month
aivsoih	10264	22	15.35055	-9	22	hour interview began
aivsoim	10264	61	26.33691	-9	59	minute interview began
alknbrd	10264	5	.8058262	-9	2	likes present neighbourhood
alkmove	10264	5	1.092459	-9	2	prefers to move house
alkmovy	10264	30	2.309334	-9	96	prefers to move: main reason
aplever	10264	3	-7.714049	-9	1	always resident at present address
aplnowm	10264	16	5.354053	-9	12	month moved to present address
aplnowy	10264	74	75.3333	-9	97	year moved to present address
aplb4d	10264	290	120.7786	-9	368	district of previous residence
aplb4c	10264	35	-7.337783	-9	85	country of last residence
aplbornd	10264	301	113.6858	-9	368	district of birth
aplbornc	10264	69	-4.821999	-9	92	country of birth
ayr2uk	10264	74	-3.041017	-9	91	year came to britain
adobm	10264	14	6.42537	-2	12	month of birth
adoby	10264	83	1945.263	-2	1975	year of birth
asex	10264	2	1.529131	1	2	sex
apaju	10264	7	-6.991426	-9	1	father not working when resp. aged 14
apasoc	10264	341	477.1474	-9	999	father's occupation (soc), resp. aged 14
apasemp	10264	6	1734217	-9	2	father self employed, resp. aged 14
apaboss	10264	6	-6.622272	-9	2	father had employees, resp. aged 14
apamngr	10264	7	8654521	-9	3	father was manager, resp. aged 14
amaju	10264	7	-3.502825	-9	1	mother not working when resp. aged 14
amasoc	10264	214	245.9642	-9	999	mother's occupation (soc), resp. aged 14
amasemp	10264	6	-4.231196	-9	2	mother self employed, resp. aged 14
amaboss	10264	6	-7.588757	-9	2	mother had employees, resp. aged 14
amamngr	10264	7	-4.133671	-9	3	mother was manager, resp. aged 14
amlstat	10264	7	2.364867	-9	5	present legal marital status
aschool	10264	5	-7.785659	-9	2	never went to /still at school
ascend	10264	16	15.09772	-9	22	school leaving age
asctype	10264	11	4.478956	-9	9	type of school attended
ascnow	10264	3	1.968726	-8	2	still at school

The Case for Greater Transparency

Greater transparency will

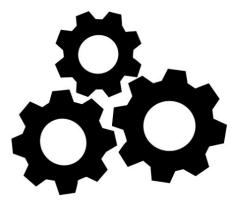
- Increase the capacity to understand how the research was conducted
- 2. Help other scholars evaluate the analyses undertaken
- 3. Aid the detection of errors and inconsistencies
- 4. Facilitate the incremental development of work
- 5. Contribute to limiting negative research practices
- 6. Provide extra safeguards against nefarious practices
- 7. Improve confidence in results within and beyond the academic community

Duplication and Replication

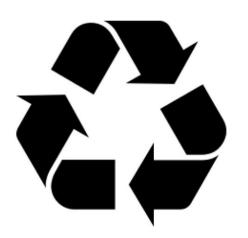
A replication study extends the original work with

- 1. additional measures
- 2. alternative measures
- 3. new data
- 4. different statistical analytical techniques

or any combination of these four components



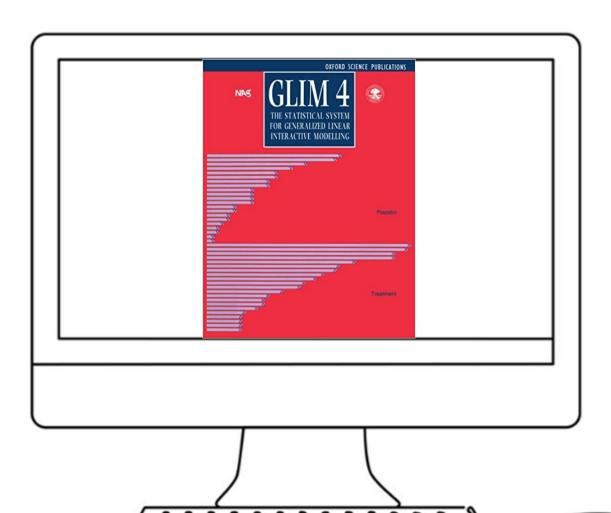
Data Sharing and Citing Data Citing Data

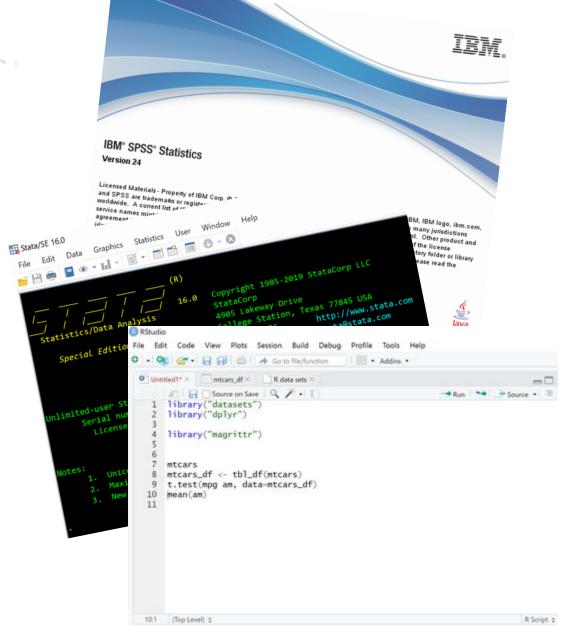


indabl

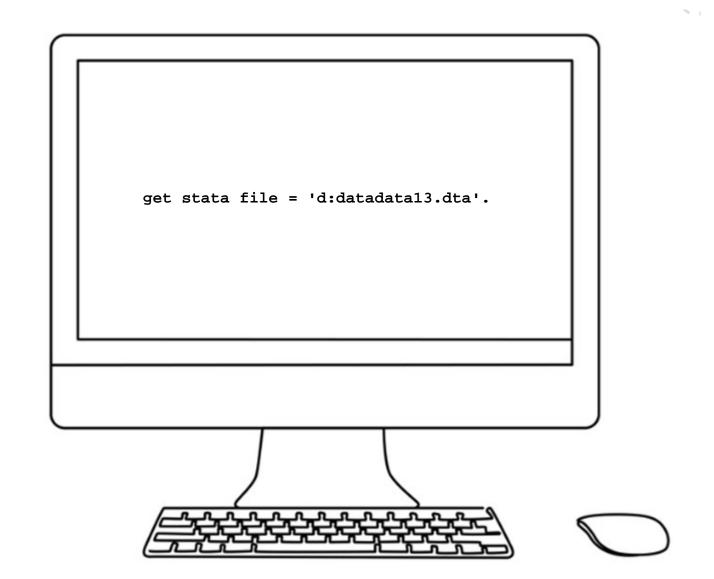
Accessible nteroperable

eusable

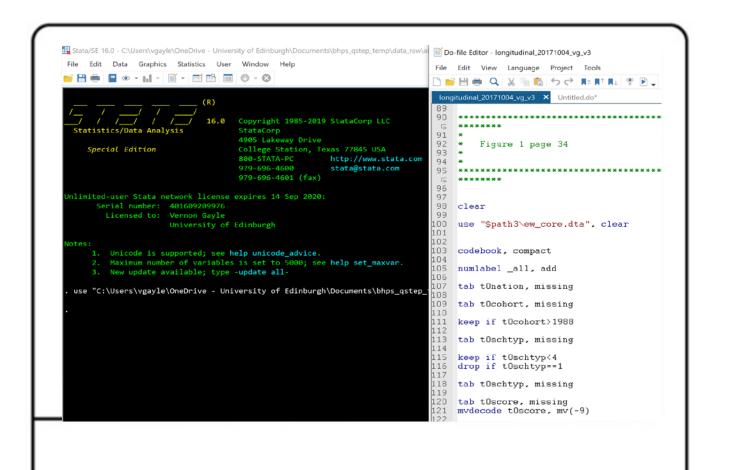




The Workflow and Code Sharing



Drop down menus = no audit trail



GUIs will leave you in a sticky mess!

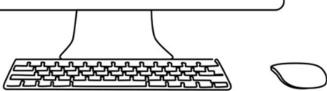

```
RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
O - O Go to fle/function S - Addins -
 ● Untitled1* × mtcars_df × R data sets ×
   1 library("datasets")
2 library("dplyr")
                                                          Run Source - =
    4 library("magrittr")
   7 mtcars
   8 mtcars_df <- tbl_df(mtcars)
9 t.test(mpg am, data-mtcars_df)
   10 mean(am)
  10:1 (Top Level) :
                                                                          R Script a
```

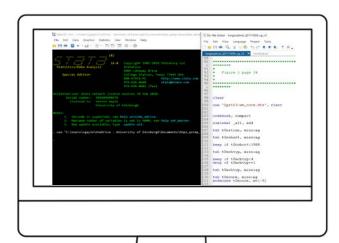


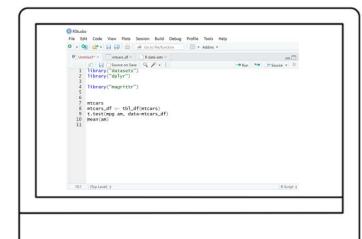
```
numlabel n622, add
tab n622, mi
codebook n622
capture drop ncds male
    gen ncds_male = .
    replace ncds male = 1 if (n622==1)
    replace ncds_male = 0 if (n622==2)
    label variable ncds male "NCDS Cohort member Male"
    label define yesno 1 "Yes" 0 "No", replace
    label values ncds male yesno
    tab ncds male, mi
tab n622 ncds male
```



Documenting the Workflow







get stata file = 'd:datadata13.dta'.

Cohort member's gender

Gender is derived from variable n622.

This variable comes from the age 0 (birth) survey (question 53). This question asks: Sex of infant - Male/Female. Variable n622 also appears in other sweeps of the survey so it is possible that this is variable includes information collected in multiple surveys.

This variable is coded (1) Male (2) Female. We recode the variable into a 1/0 dummy variable for male.

```
In [12]: numlabel n622, add
tab n622, mi
codebook n622
capture drop ncds_male
    gen ncds_male = .
    replace ncds_male = 1 if (n622==1)
    replace ncds_male = 0 if (n622==2)
    label variable ncds_male "NCDS Cohort member Male"
    label define yesno 1 "Yes" 0 "No", replace
    label values ncds_male yesno
    tab ncds_male, mi
tab n622 ncds_male
```


Social-Class-Inequalities-in-General-Cognitive-Ability-in-Two-British-Birth-Cohorts / JupterNotebook_20171122.ipynb

An investigation of Social Class Inequalities in General Cognitive Ability in Two British Birth Cohorts

Vernon Gayle (vernon.gayle@ed.ac.uk)

Abstract

The 'Flynn effect' describes the substantial and long-standing increase in average cognitive ability test scores, which has been observed in numerous psychological studies. Flynn makes an appeal for researchers to move beyond psychology's standard disciplinary boundaries and to consider sociological contexts, in order to develop a more comprehensive understanding of cognitive inequalities. In this article we respond to this appeal and investigate social class inequalities in general cognitive ability test scores over time. We analyse data from the National Child Development Study (1958) and the British Cohort Study (1970). These two British birth cohorts are suitable nationally representative large-scale data resources for studying inequalities in general cognitive ability.

We observe a large parental social class effect, net of parental education and gender in both cohorts. The overall finding is that large social class divisions in cognitive ability can be observed when children are still at primary school, and similar patterns are observed in each cohort. Notably, pupils with fathers at the lower end of the class structure are at a distinct disadvantage. This is a disturbing finding and it is especially important because cognitive ability is known to influence individuals later in the lifecourse.

Keywords

Cohort member's gender

Gender is derived from variable n622.

This variable comes from the age 0 (birth) survey (question 53). This question asks: Sex of infant - Male/Female. Variable n622 also appears in other sweeps of the survey so it is possible that this is variable includes information collected in multiple surveys.

This variable is coded (1) Male (2) Female. We recode the variable into a 1/0 dummy variable for male.

```
In [12]: numlabel n622, add
tab n622, mi
codebook n622
capture drop ncds_male
    gen ncds_male = .
    replace ncds_male = 0 if (n622==1)
    replace ncds_male = 0 if (n622==2)
    label variable ncds_male "NCDS Cohort member Male"
    label define yesno 1 "Yes" 0 "No", replace
    label values ncds_male yesno
    tab ncds_male, mi

tab n622 ncds_male
*return to jupyter
```

- . numlabel n622, add
- . tab n622, mi

0-3D Sex of child	 Freq.	Percent	Cum.
1. Male 2. Female	9,595 8,959 4	51.70 48.28 0.02	51.70 99.98 100.00
Total	18,558	100.00	

. codebook n622

Making the Workflow Public

Current Good Practice

An investigation of social class inequalities in general cognitive ability in two British birth cohorts¹

Roxanne Connelly o and Vernon Gayle

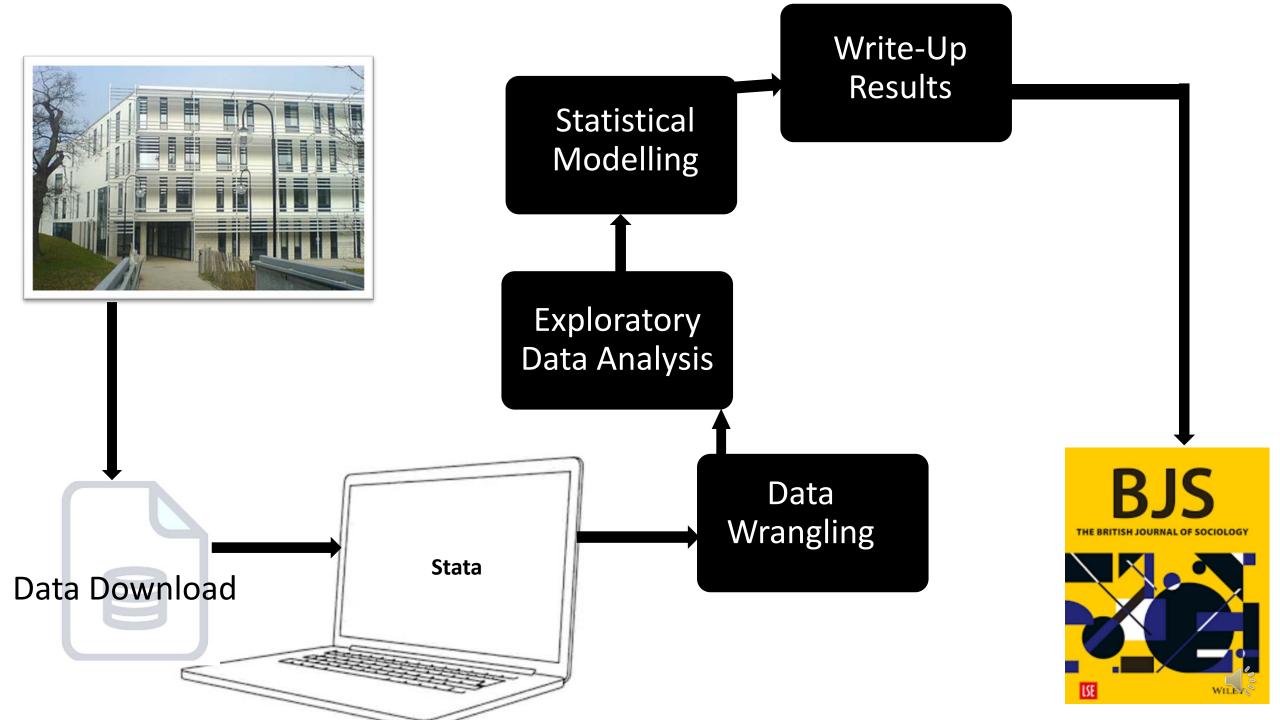
The 'Flynn effect' describes the substantial and long-standing increase in average cognitive ability test scores, which has been observed in numerous psychological studies. Flynn makes an appeal for researchers to move beyond psychology's standard disciplinary boundaries and to consider sociological contexts, in order to develop a more comprehensive understanding of cognitive inequalities. In this article we respond to this appeal and investigate social class inequalities in general cognitive ability test scores over time. We analyse data from the National Child Development Study (1958) and the British Cohort Study (1970). These two British birth cohorts are suitable nationally representative large-scale data resources for studying inequalities in general cognitive ability. We observe a large parental social class effect, net of parental education and gender in both cohorts. The overall finding is that large social class divisions in cognitive ability can be observed when children are still at primary school, and similar patterns are observed in each cohort. Notably, pupils with fathers at the lower end of the class structure are at a distinct disadvantage. This is a disturbing finding and it is especially important because cognitive ability is known to influence individuals later

Keywords: Social class; cognitive ability; longitudinal; cohort studies; social in the lifecourse. atification; inequality

An investigation of Social Class Inequalities in General Cognitive Ability in Two British Birth Cohorts

Roxanne Connelly (R.Connelly@warwick.ac.uk)

Vernon Gayle (vernon.gayle@ed.ac.uk)


Abstract

The 'Flynn effect' describes the substantial and long-standing increase in average cognitive ability test scores, which has been observed in numerous psychological studies. Flynn makes an appeal for researchers to move beyond psychology's standard disciplinary boundaries and to consider sociological contexts, in order to develop a more comprehensive understanding of cognitive inequalities. In this article we respond to this appeal and investigate social class inequalities in general cognitive ability test scores over time. We analyse data from the National Child Development Study (1958) and the British Cohort Study (1970). These two British birth cohorts are suitable nationally representative large-scale data resources for studying inequalities in general cognitive ability.

We observe a large parental social class effect, net of parental education and gender in both cohorts. The overall finding is that large social class divisions in cognitive ability can be observed when children are still at primary school, and similar patterns are observed in each cohort. Notably, pupils with fathers at the lower end of the class structure are at a distinct disadvantage. This is a disturbing finding and it is especially important because cognitive ability is known to influence individuals later in the lifecourse.

Keywords

FAIR DATA PRINCIPLES

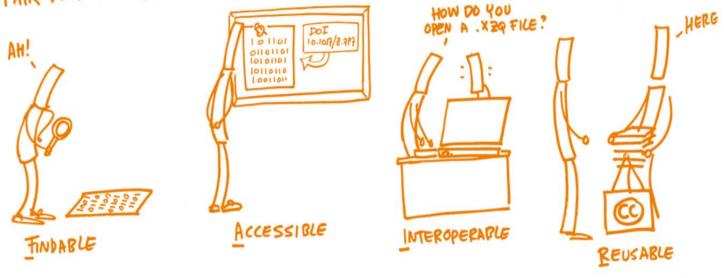
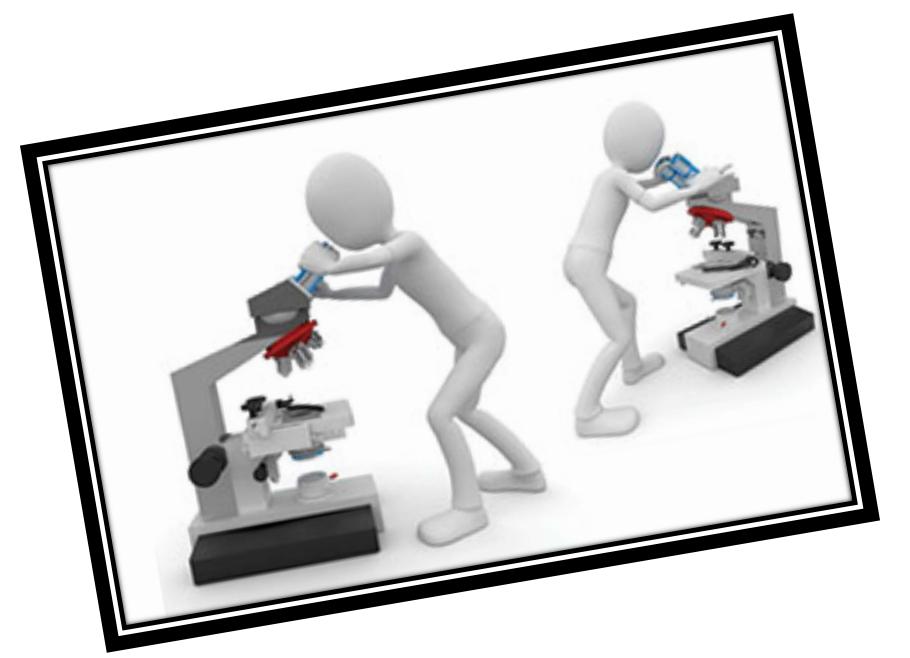
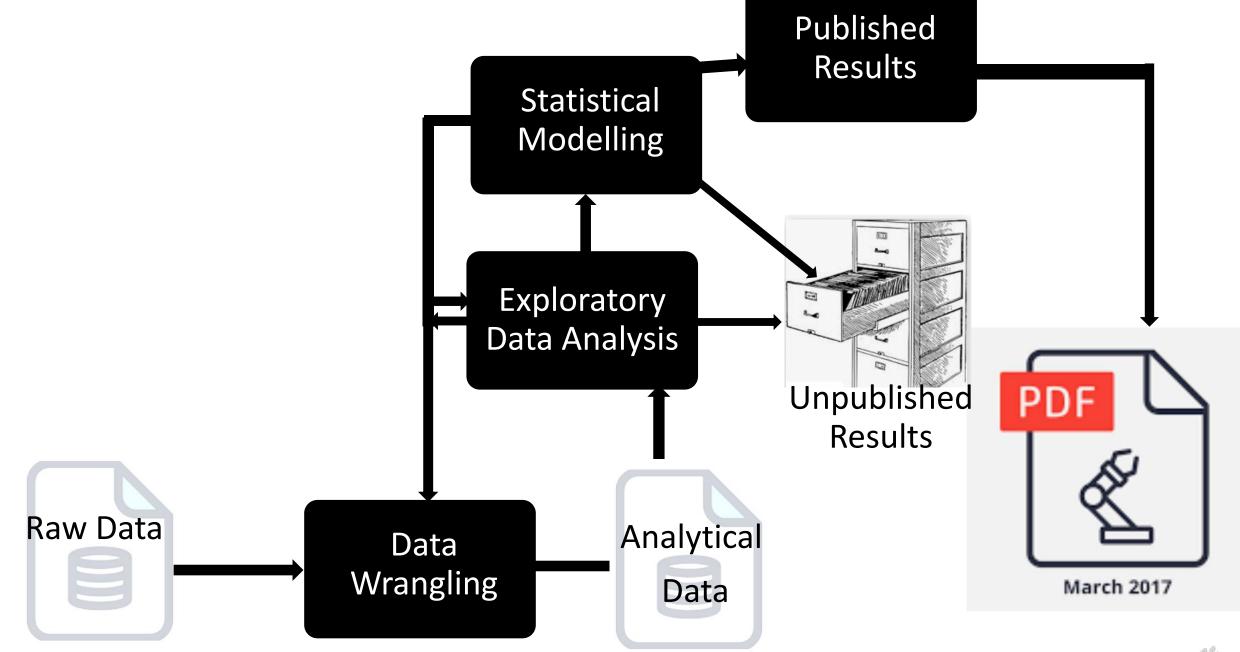


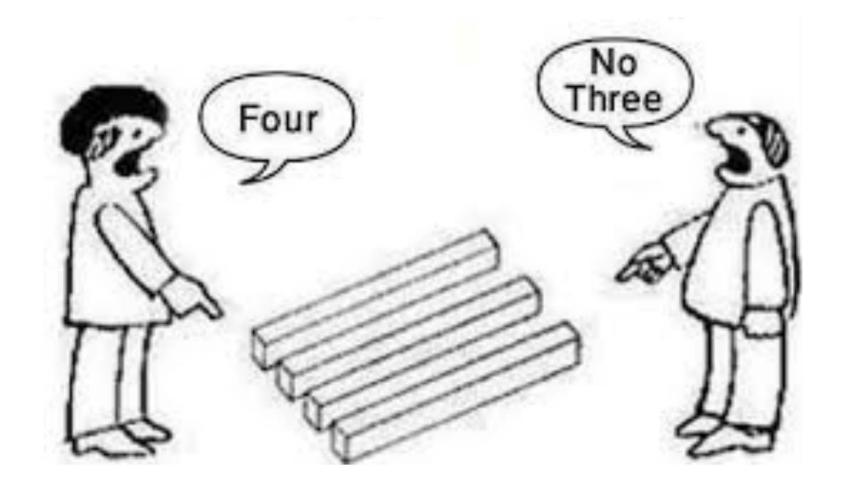
Image: https://book.fosteropenscience.eu

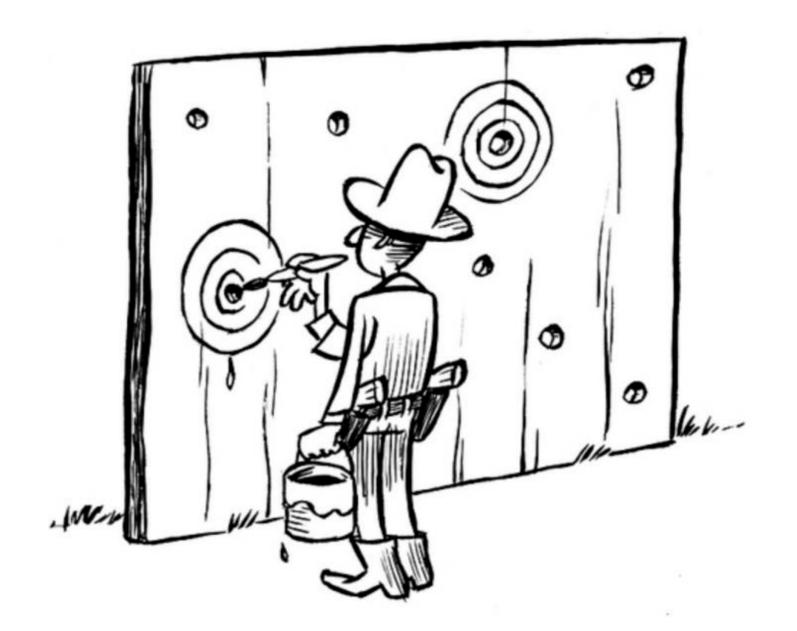
GitHub

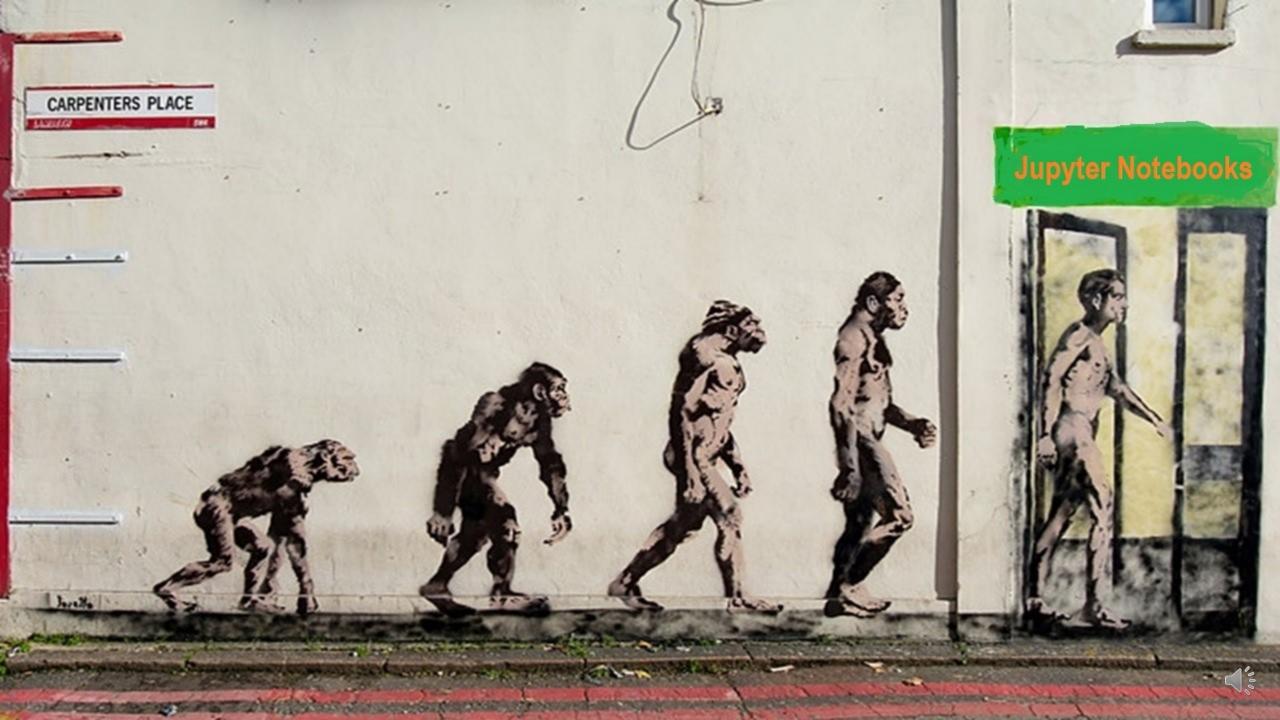




Conclusions







How to cite this video

Gayle, V. (2020) Reproducible Data Analysis. Available at: https://www.ncrm.ac.uk (Accessed: day month year)

Reproducible Data Analysis

Professor Vernon Gayle

vernon.gayle@ed.ac.uk

@Profbigvern

https://github.com/vernongayle

© V. Gayle

