
 This is the second video outlining the basics of multilevel modelling. In this 

session I'll introduce the two-level random intercept model for continuous 

data. This is probably the most widely used multilevel model and allows us 

to account for basic clustering, whilst also identifying relevant group level 

predictors. I'll start by introducing the simplest multilevel model for 

continuous data, a two-level model with no explanatory variables, 

sometimes called the variance components model. I'll then outline how to 

quantify group differences using the variance partition coefficient. Finally, 

I'll include explanatory variables in the model, starting with variables 

measured at the lowest level between individuals, before looking at 

variables measured at the group level.  

 

Two level random intercept models extend standard linear regression 

models by re-partitioning the residual error between an individual and a 

group component. This can allow us to gain an initial picture of the 

importance of groups, where no explanatory variables are included. To 

explain the logic behind the random intercept model, I want to discuss a 

very simple example with just eight data points, that each record a person's 

height. We can represent the distribution of heights, with the mean height 

across the sample, and the variance, or standard deviation which captures 

the spread of heights. We can also think of this as a basic regression 

model with no explanatory variables. Here the height for any individual, YI, 

is equal to the mean height across the population, beta naught, and the 

individuals residual difference from this mean. So, the height for person 1, 

Y1, is equal to beta naught plus individual 1's residual difference from the 

mean, E1. We then assume that the residuals are approximately normal 

with mean zero in variant Sigma Squared E. But if we know the individuals 

belong to different groups, or families in this case, we can capitalize on this 

additional information and improve our estimates of the height of any 

individual. So here our 8 data points come from two families, one 

represented by green triangles and one by red circles. Now we can refer to 

YIJ, there's the height for individual I from Group J, we still have an 

estimate of the mean height beta naught, which now refers the average 

height of people across all families; and we include an additional set of 

residuals labelled UJ, which refer to the group mean differences in height 

from the overall mean. So, people from Group 1 are generally taller than 

average, and the average height of family 1 is equal to the overall average 

beta naught, plus the residual U1, whilst people from group 2 are generally 

shorter than average. Like the individual residuals in the single level model, 

these group residuals are assumed approximately normal with zero mean 

and variance which we label Sigma Squared U.  



 

And now we also have individual residual differences around the family 

specific means, which we also assume are approximately normal with 

mean 0 and variance Sigma Squared E. Now we've re-partitioned the 

variance between an individual component, Sigma Squared E, and a group 

component Sigma Squared U. Now we can produce an initial assessment 

of the importance of groups with the variance partition coefficient. This 

looks at what proportion of the total variance, made up of Sigma Squared U 

and Sigma Squared E, can be attributable to differences between groups 

Sigma Squared U. This ranges from 0, when there is no group effect, to 1 

where there are within group differences.  

 

Turning to some real data, here we have measurements of fear of crime, 

which is a standardized scale, where higher scores mean more fear, for a 

total of 27,764 residents that live in 3,390 areas of England. There is an 

average of 8 residents in each area with a maximum of 47. Here we have 

our empty model which partitions the variation in fear between individuals, 

with a variance of 0.863 and areas with a variance of 0.145. With our 

individual and group variance estimates we can calculate an initial 

assessment of the importance of groups, which is 0.145 over the total 

variance. This gives us an estimate of 0.144 or just over 14% of the 

variability is allocated to between group differences. We can then add 

explanatory variables to our model in exactly the same way we do in single 

level regression models. So, adding a single explanatory variable weight to 

our model of mean heights, the regression line represents the line of best 

fit, that's closest to all data points simultaneously, or which minimizes the 

squared residuals. Now beta naught refers to the point where the line 

crosses the y axis, and beta one quantifies the gradient of the line or how 

much height increases for one unit increase in weight. And for each family, 

we assume the same increase in height, for each unit increase in weight, 

the lines are parallel, but the point where the line crosses the y axis is 

allowed to vary by the residual UJ; And we still assume the individual 

residuals EIJ, and group level residuals UJ, are approximately normal with 

mean 0 and variance is Sigma Squared E and Sigma Squared U.  

 

One of the key strengths of multilevel models is that they allow us to 

simultaneously include group level information. This allows us to formulate 

interesting questions about the role of context. Group effects can be either 

external e.g. administrative data, or can be aggregates of included 

individual level variables, although the latter depends at least, a bit, on the 

group size. There's no need to explicitly identify these as group effects, this 



is captured by the group residual.  

 

So, returning to our worked example using the crime survey for England 

and Wales, in model two we include three explanatory variables. The first 

two, age, and whether or not you've been a victim of crime in the last year, 

a dummy variable, are measured at the individual level. This can be seen 

because of the IJ subscripts. The final variable, neighbourhood crime rate, 

is measured at the group level with only a subscript J. Here we see 

generally lower levels of fear amongst older residents, and notably higher 

levels of fear amongst victims of crime, when compared to non-victims. We 

also see that residents of areas that have a higher crime rates are 

generally more fearful than residents in areas with lower crime rates. 

Having accounted for these three explanatory variables, we see a reduction 

in the variability at the individual and group levels. We consider these to be 

approximate R Squares by considering the reductions in variance in each 

level. So, at the individual level, the variance dropped from 0.863 to 0.85, a 

drop of roughly 1.5%, and at the group level, accounting for the crime rate, 

leaves the area variance to fall from 0.145 to 0.105, a drop of nearly 28%.  

 

So, in this session we've introduced the variance components model and 

the random intercept model. The variance components model can be used 

to provide an initial estimate of the contribution of groups. The random 

intercept model allows us to include explanatory variables at the individual 

and group level to explain variation in our dependent variable. 


