
In this third video on multilevel modelling we will consider the random 

coefficient model. This extends the random intercept model, by relaxing the 

assumption that the relationship between our dependent variable and the 

explanatory variables is the same across all groups. This can be used for 

continuous or categorical explanatory variables. We will also consider the 

use of cross level interactions to examine how the strength of an individual 

level relationship may be moderated by an included group level effect.  

 

Previously we considered the relationship between weight and height. Here 

we assumed that a one unit increase in weight, was associated with the 

same increase in height across all families, but we allowed the point where 

the line crossed the y axis to vary across families. But what if the 

relationship between weight and height is not uniform across all families. 

The random coefficient model allows this by including an additional set of 

residuals, UJ, for each explanatory variable. In our case we have one 

explanatory variable, X1, so we include one new set of residuals U1J. So, 

in family one the residual is positive, meaning the relationship between 

weight and height is stronger than the overall average by beta 1 plus U11; 

And in family two the residual is negative, meaning the relationship 

between weight and height is weaker than the overall average, beta 1 

minus U12. Note that we also now attach the subscript naught to the 

original U residuals to show that these now relate specifically to the 

intercept. Note also that the intercept residual is now dependent on where 

we choose to make the value of x = 0, and refers only to variation at this 

point. It's therefore often advisable to centre explanatory variables when we 

include them in our models.  

 

Now we have two sets of group level residuals, one associated with the 

intercept U0J, and one associated with the coefficient U1J. These residuals 

are assumed bivariate normal, with mean zero, and variance is 

summarized by variance covariance matrix. The matrix is composed of an 

intercept variance Sigma Squared U0, which accounts for variability in the 

intercept, a coefficient variance Sigma Squared U1, which accounts for 

variability in the effect of weight on height, and a covariant term between 

the two sets of residuals U01. This covariance term tells us how the 

coefficient and intercept residuals are linked. So, a positive value tells us 

that in general, groups with a positive intercept residual tend to have a 

positive coefficient residual and groups with a negative intercept residual 

tend to have a negative coefficient residual. A negative value tells us that in 

general groups with a positive intercept residual tend to have a negative 

coefficient residual, and groups were the negative intercept residual tend to 



have a positive coefficient residual. But the interpretation of this covariance 

term requires care and is dependent on the relationship between Y and X. 

For example, when the relationship between Y and X is positive, a positive 

covariance means that when the intercept residual is positive, and hence 

the intercept is higher than average, there will also be a positive coefficient 

residual. This means a stronger than average coefficient, because you are 

adding a positive residual to the positive slope. In contrast a negative 

covariance term means that a higher than average intercept is associated 

with a weaker than average coefficient, because you're adding a negative 

residual to the positive slope. When the coefficient is negative the opposite 

happens. A positive covariance means that when the intercept is higher 

than average, you're adding a positive residual to a negative coefficient, 

making it weaker; and a negative covariance means that when the intercept 

is higher than average, you're adding a negative residual to a negative 

coefficient, making it stronger in the negative direction.  

 

So, returning to our fear of crime example, we allow the positive effects of 

victim status to vary randomly across areas in model 3. This allows for the 

possibility that the high levels of fear amongst victims of crime, may not be 

so apparent in some areas, whilst in other areas the difference between 

victims and non-victims may be bigger than average. Here we identify 

positive variance term, suggesting that there are differences in the 

magnitude of the effect of being a victim of crime, on levels of fear across 

neighbourhoods. Here we identify a significant variance term suggesting 

that there are differences in the magnitude of the effect of being a victim of 

crime, on levels of fear across neighbourhoods. We also identify a negative 

covariance term, which suggests that in areas where the intercept is higher 

than average, the gap between victims and non-victims will be smaller than 

average. Remember a negative covariance means that positive intercept 

residuals tend to go with negative coefficient residuals, and as the intercept 

refers to a non-victim, this means, then in areas where non-victims tend to 

report more fear of crime, there are less notable differences between 

victims and non-victims. In other words, everyone is more fearful in these 

areas.  

 

We can represent this graphically by considering the differences between 

victims and non-victims for four sampled neighbourhoods. These areas 

have been ranked based on the levels of fear of non-victims, the red 

circles, from lowest on the left to highest on the right. Here we can see that 

in areas where non-victims tend to report more fear, towards the right of the 

graph, there is a smaller increase in fear amongst victims of crime. Finally, 



we can incorporate level interactions to more directly model how individual 

level relationships are moderated by features at the group level. This is the 

exact same logic as interaction effects in single level regression models. 

So, the interaction between X1 and X2 is just X1 by X2. The only difference 

here is that X1 and X2 can be from different levels of analysis. So, 

considering fear of crime, model for extends our analysis by also including 

the interaction term between individual victim status and the area crime 

rates. This is identified as significant and negative. This suggests that for 

victims of crime, the positive association between the crime rate and fear is 

weaker than it is for non-victims. Alternatively, we could say than in areas 

where the crime rate is higher than average, the difference in fear between 

victims and non-victims will be smaller than average. Everyone will be more 

fearful. Both explanations are technically valid in this context. Of course, 

this model needs extension, but it provides a basic example of the 

multilevel model.  

 

So, to sum up, in this video we've introduced the random coefficients 

model. This relaxes the assumption of a random intercept model that the 

relationship between X and Y will be the same in every group. Instead we 

allow a residual difference in the magnitude of the coefficient for each 

group, and estimate their variance and covariance with the intercept. We 

can also use cross level interactions to more directly model the connections 

between individual and group effects. Although these models have been 

introduced in relation to a continues outcome, a two-level model and a 

single random coefficient, this then generalizes neatly to non-normal data, 

more than two levels and multiple random terms. 


