Diagnostics in Poisson Regression

Models - Residual Analysis

Outline

- Diagnostics in Poisson Regression Models Residual Analysis
- Example 3: Recall of Stressful Events continued

Residual Analysis

- Residuals represent variation in the data that cannot be explained by the model.
- Residual plots useful for discovering patterns, outliers or misspecifications of the model.
 Systematic patterns discovered may suggest how to reformulate the model.
- If the residuals exhibit no pattern, then this is a good indication that the model is appropriate for the particular data.

Types of Residuals for Poisson Regression Models

- Raw residuals: O_i -
- Pearson residuals: (or standardised)
- Adjusted residuals (preferred):

$$O_{i} - E_{i}$$

$$\frac{O_{i} - E_{i}}{\sqrt{E_{i}}}$$

$$O_{i} - E_{i}$$

$$\frac{O_{i} - E_{i}}{SD(O_{i} - E_{i})}$$

$$SD(O_{i} - E_{i}) = \sqrt{E_{i}(1 - E_{i}/n)}$$

- If H₀ is true, the adjusted residuals have a standard normal N(0,1) distribution for large samples.
- Back to the "Recall of Stressful Events" example

Example 3: Recall of Stressful Events Data

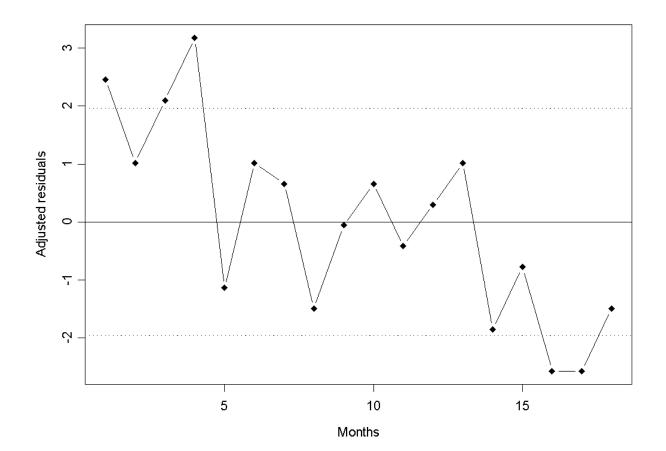
month	adjusted residual	month	adjusted residual
1	2.46	10	0.66
2	1.02	11	-0.42
3	2.10	12	0.30
4	3.18	13	1.02
5	-1.14	14	-1.86
6	1.02	15	-0.78
7	0.66	16	-2.58
8	-1.50	17	-2.58
9	-0.06	18	-1.50

Example 3: Recall of Stressful Events

- If the adjusted residuals follow N(0,1), we expect 18 × 0.05 = 0.9 ≈ 1 adjusted residual larger than 1.96 or smaller than -1.96
- Months 1, 3, 4 positive adjusted residuals
 Months 16, 17 negative adjusted residuals
- More likely to report recent events (positive residual: means observed is larger than expected, i.e. more likely to report a stressful event in a months immediately prior to interview)

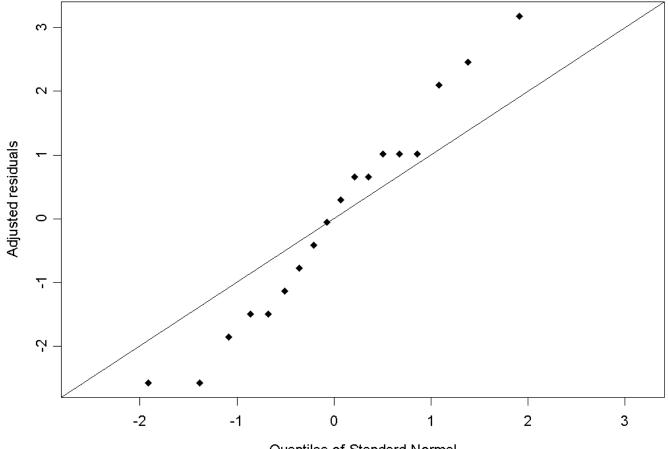
Example 3: Recall of Stressful Events

• Plot of adjusted residuals by month shows downward trend.



Normal Q-Q Plot

- Probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other (Q stands for Quantiles, i.e. quantile against quantile)
- Plots observed quantiles against expected quantiles, hence plot quantiles of adjusted residuals against the quantiles of the standard normal.
- Points should lie close to y = x line, if adjusted residuals are N(0,1).



Quantiles of Standard Normal

Conclusions

- Divergence in the tails from straight line
- Strong evidence that equiprobable model does **not** fit the data.
- More likely to report recent events. Such a tendency would result if respondents were more likely to remember recent events than distant events.
- So, use another model. Which one?
- Let us explore a Poisson time trend model (a Poisson model with a covariate)

Poisson Regression Model with a Covariate –

Poisson Time Trend Model

Outline

- Poisson Time Trend Model Poisson regression model with a covariate
- Example 3: Recall of Stressful Events continued

Poisson Time Trend Model – including a covariate

- y_i = number of events in month i.
- The log of the expected count is a linear function of time before interview:

$$\log(\mu_i) = \alpha + \beta i \qquad i = 1, \cdots, C$$

where $\mu_i = E(y_i)$ is the expected number of events in month i.

 Meaning: model assumes response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modelled by a linear combination of unknown parameters (here 2).

Poisson Time Trend Model – including a covariate

- For model $\log(\mu_i) = \alpha + \beta i$ $i = 1, \dots, C$
- $\beta = 0 \rightarrow$ equiprobable model (no effect of the covariate).
- $\beta > 0 \rightarrow$ the expected count μ_i **increases** as month (i) increases.
- $\beta < o \rightarrow$ the expected count μ_i **decreases** as month (i) increases.

Poisson Model – with one covariate

• In general, the form of a Poisson model with one explanatory variable (X) is:

 $\log(\boldsymbol{m}) = \boldsymbol{a} + \boldsymbol{b} x$

- Explanatory variable X can be categorical or continuous.
- In this example 'month i' is the explanatory variable X.

Poisson Model: Parameter Estimates Predicted Values and Residuals

• Parameters estimated via maximum likelihood estimation

 \rightarrow and $\hat{\alpha}$ $\hat{\beta}$

• These estimates are used to compute **predicted values**:

$$\log(\hat{\mu}_{i}) = \hat{\alpha} + \hat{\beta} i \longrightarrow \hat{\mu}_{i} = \exp(\hat{\alpha} + \hat{\beta} i)$$

• The **adjusted residuals** are

$$\frac{y_{i} - \hat{\mu}_{i}}{\sqrt{\hat{\mu}_{i}(1 - \hat{\mu}_{i}/n)}} \quad \text{where} \quad n = \sum_{i=1}^{C} y_{i}$$

Poisson Model: Goodness of Fit Statistics

• The goodness-of-fit test statistics are

Pearson Chi-squared Test Statistic

$$X^{2} = \sum_{i=1}^{C} \left[\frac{y_{i} - \hat{\mu}_{i}}{\sqrt{\hat{\mu}_{i}}} \right]^{2}$$

Likelihood Ratio Test Statistics (Deviance)

$$L^{2} = 2\sum_{i=1}^{C} y_{i} \log \left[\frac{y_{i}}{\hat{\mu}_{i}}\right]$$

• The null hypothesis is

H₀: The model $y_i \sim Poisson(\mu_i)$ with $log(\mu_i) = \alpha + \beta i$ holds.

Returning to our example expected counts (under the model) are ...

Example 3: Recall of Stressful Events

Month	Count Obs	Count Exp	Month	Count Obs	Count Exp
1	15	15.1	10	10	7.1
2	11	13.9	11	7	6.5
3	14	12.8	12	9	6.0
4	17	11.8	13	11	5.5
5	5	10.8	14	3	5.1
6	11	9.9	15	6	4.7
7	10	9.1	16	1	4.3
8	4	8.4	17	1	4.0
9	8	7.7	18	4	3.6

Expected value calculated using the model: $\hat{m}_i = \exp(\hat{a} + \hat{b}_i)_{20}$

• If H₀ is true

$$\chi^2 \sim \chi^2_{df}$$
 $L^2 \sim \chi^2_{df}$

where df = no. of cells – no. of model parameters = C - 2 = 18 - 2 = 16

- $X^2 = 22.71$ with 16 df. p-value = 0.1216 \rightarrow do not reject H_0 .
- $L^2 = 24.57$ with 16 df. p-value = 0.0778 \rightarrow do not reject H_0 .

Conclusion

- The Poisson time trend model is consistent with the data.
- Participants are more likely to report recent events.

Adjusted Residuals

month	adjusted residual	month	adjusted residual
1	-0.05	10	1.11
2	-0.89	11	0.18
3	0.36	12	1.26
4	1.61	13	2.42
5	-1.86	14	-0.98
6	0.34	15	0.64
7	0.28	16	-1.70
8	-1.58	17	-1.60
9	-0.09	18	0.20

Adjusted Residuals

- If the adjusted residuals follow N(0,1), we expect 18 × 0.05 = 0.9 ≈ 1 adjusted residual larger than 1.96 or smaller than -1.96.
- So, it is not surprising that we see one residual (month 13: 2.42) exceed 1.96 (i.e. no evidence against H₀).
- Adjusted residuals show no obvious pattern based on plot by month.

Poisson Regression: Model Interpretation

- Fitted values help with interpretation
- Fitted values are obtained by
- The coefficient is interpreted whether the explanatory variable is a categorical or a continuous variable.

$$\hat{y}_{i} = \hat{m}_{i} = \exp(\hat{a} + \hat{b} i)$$

ĥ

Poisson Regression: Model Interpretation – cont.

 For a binary explanatory variable, where X=0 means absence and X=1 means presence, the rate ratio (RR) for presence vs. absence

$$RR = \frac{E(y_i | Presence)}{E(y_i | Absence)} = \frac{E(y_i | x_i = 1)}{E(y_i | x_i = 0)} = \exp(\beta)$$

• For a **continuous explanatory variable** a one unit increase in X will result in a multiplicative effect of $n \mu \exp(\beta)$

Confidence Interval for the Slope

- Estimate of the slope is $\hat{\beta} = -0.0838$ with estimated standard error $= 0.016 \$ (\hat{\beta})$
- Therefore a 95% CI for β is:
 - = -0.0838 ± 1.96 x 0.0168
 - = (-0.117; -0.051)

(therefore negative, CI does not include 0), the expected count μ_i decreases as month (i) increases

Estimated Change

 To add interpretation, the estimated change (from one month to the next) in proportionate terms is

$$\frac{\hat{\mu}_{i+1} - \hat{\mu}_{i}}{\hat{\mu}_{i}} = \frac{\hat{\mu}_{i+1}}{\hat{\mu}_{i}} - 1 \qquad \hat{\mu}_{i} = \hat{E}(Y_{i}) = \exp(-\hat{\alpha} + \hat{\beta}_{i})$$

$$= \frac{\exp(-\hat{\alpha} + \hat{\beta}_{i}(i+1))}{\exp(-\hat{\alpha} + \hat{\beta}_{i})} - 1$$

$$= \exp(-\hat{\beta}_{i}) - 1$$

Estimated Change

• For our example "Recall of Stressful Events" this means:

$$\frac{\hat{m}_{i+1} - \hat{m}_i}{\hat{m}_i} = \exp(-0.0838) - 1$$
$$= 0.920 - 1 = -0.08$$

i.e. the estimated change is an **8% decrease** per month.

CI for the Estimated Change

	Lower Bound	Upper Bound
β	-0.117	-0.051
$\exp(\beta)$	$\exp(-0.117) = 0.89$	exp(-0.051) = 0.95
$\exp(\beta)$ - 1	0.89 - 1 = -0.11	0.95 - 1 = -0.05
	-11%	-5%

• Estimated change is **-8%** per month with a 95% CI of **(-11%, -5%)**. The number of stressful events decreases.

References

- Agresti, A (2013) Categorical Data Analysis, 3rd ed, New Jersey, Wiley.
- Agresti, A. (2007) An Introduction to Categorical Data Analysis. 2nd ed, Wiley.
- Haberman, S. J. (1978) *Analysis of Qualitative Data, Volume 1,* Academic Press, New York.
 p. 3 for "Recall of stressful events" example.
 p. 87 for "Suicides" example.

Thank you for your attention

