

Poisson Regression Models for Count Data

Dr Gabriele Durrant

Outline

- Review
- Introduction to Poisson regression
- A simple model: equiprobable model
- Pearson and likelihood-ratio test statistics
- Residual analysis
- Poisson regression with a covariate (Poisson time trend model)

Review of Regression

You may have come across:

Dependent Variable	Regression Model
Continuous	Linear
Binary	Logistic
Multicategory (unordered) (nominal variable)	Multinomial Logit
Multicategory (ordered) (ordinal variable)	Cumulative Logit

Regression

In this session:

Dependent Variable	Regression Model
Continuous	Linear
Binary	Logistic
Multicategory (unordered) (nominal variable)	Multinomial Logit
Multicategory (ordered) (ordinal variable)	Cumulative Logit
Count variable	Poisson Regression (Log-linear model)

Data

Data for this session are assumed to be:

- A **count** variable Y (e.g. number of accidents, number of suicides)
- One categorical variable (X) with C possible categories (e.g. days of week, months)
- Hence Y has C possible outcomes y₁, y₂, ..., y_C

Introduction: Poisson regression

- Poisson regression is a form of regression analysis model count data (if all explanatory variables are categorical then we model contingency tables (cell counts)).
- The model models expected frequencies
- The model specifies how the count variable depends on the explanatory variables (e.g. level of the categorical variable)

Introduction: Poisson regression

- Poisson regression models are generalized linear models with the logarithm as the (canonical) link function.
- Assumes response variable Y has a Poisson distribution, and the logarithm of its expected value can be modelled by a linear combination of unknown parameters.
- Sometimes known as a log-linear model, in particular when used to model contingency tables (i.e. only categorical variables).

Example: Suicides (count variable) by Weekday (categorical variable) in France

Total	6587	100.0%
Sun	894	13.6%
Sat	737	11.2%
Fri	905	13.7%
Thur	1033	15.7%
Wed	982	14.9%
Tues	1035	15.7%
Mon	1001	15.2%

Introduction: Poisson regression

 Let us first look at a simple case: the equiprobable model (here for a 1-way contingency table)

Equiprobable Model

- An equiprobable model means that:
 - All outcomes are equally probable (equally likely).
 - That is, for our example, we assume a uniform distribution for the outcomes across days of week (Y does not vary with days of week X).

Equiprobable Model

• The equiprobable model is given by:

$$P(Y=y_1) = P(Y=y_2) = ... = P(Y=y_c) = 1/C$$

- i.e. we expect an equal distribution across days of week.
- Given the data we can test if the assumption of the equiprobable model (H₀) holds

Example 1: Suicides by Weekday in France

Mon	1001	15.2%	H _o : Each day is
Tues	1035	15.7%	equally likely for suicides (i.e. the expected proportion of suicides is 100/7
Wed	982	14.9%	
Thur	1033	15.7%	
Fri	905	13.7%	
Sat	737	11.2%	= 14.3%
Sun	894	13.6%	each day)
Total	6587	100.0%	

Example 2: Traffic Accidents by Weekday

Mon	11	11.8%	Γ
WIOII	11	11.070	H _o : Each day is
Tues	9	9.7%	equally likely for
Wed	7	7.5%	an accident (i.e. the expected
Thur	10	10.8%	
Fri	1 –	16.1%	proportion of
ГП	15	10.1%	accidents is 100/7
Sat	18	19.4%	= 14.3%
Sun	23	24.7%	each day)
Total		• /	
Total	93	100.0%	

Hypothesis Testing

- H₀: Each day is equally likely for an accident.
- Alternative null hypotheses are:
 - H₀: Each working day equally likely for an accident.
 - H₀: Saturday and Sunday are equally likely for an accident.
- Omitted variables? For example, distance driven each day of the week.

Poisson regression – without a covariate

• We can express this equiprobable model more formally as a Poisson regression model (without a covariate), which models the expected frequency

Poisson regression

- We assume a **Poisson** distribution with parameter μ for the random component, i.e. $y_i \approx Poisson(\mu)$, i.e.
- Y is a random variable that takes only positive integer values
- Poisson distribution has a single parameter (μ) which is both its mean and its variance. V.

$$P(Y_i = y_i) = \frac{e^{-m_i} m_i^{y_i}}{y_i!}$$
 where $y_i = 1, 2, 3$

Poisson regression: Simple Model (No Covariate)

- We aim to model the expected value of Y. It can be shown that this is the parameter μ , hence we aim to model $\mu.$
- We can write the **equiprobable model** defined earlier as a simple Poisson model (no explanatory variables), i.e. mean of Y does not change with month:

$$E(y_i) = m_i = 1/C$$

$$\log(\mathbf{m}_{i}) = \mathbf{a}$$
 $i = 1, \dots, C$

 $a = \log(1/C)$

where is a constant.