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Computer Workshop: Ordinal logistic 

regression 

Dr Heini Väisänen 

The aims of this workshop are:  

• Fit and interpret a ordinal regression model in Stata 

• Calculate predicted probabilities and compare these across ordinal and multinomial models 

 

Download data, open Stata, and set up the do file 

➢ Download the Stata dataset crime2013-14_ multicat.dta to a suitable destination.  Remember where you saved 

these files, as we will use this as our “Working Directory” for the rest of the workshop. 

➢ Open Stata and a new do-file (we always recommend using a do-file so that you have a record of your code 

and can easily re-run the model). 

➢ Set up the do-file by typing the following in the first few rows: 

capture log close // closes any log files you may have open 

➢ type the path to your working directory between the quotation marks, e.g. 

cd “C:\statistics\binarylogit” 

log using “NCRM_multinomial logit.log”, text replace 

use “crime2013-14_multicat.dta”, clear 

Finally, click on the  icon in the toolbar (or press CTRL+D) to execute all of the commands that you have 

typed into the do-file so far.  Some output should then appear in the results window. 

➢ Use describe to get a feel for the dataset. 

In this workshop, we will study the association between a multi-category response variable and a set of predictors 

using multinomial regression. For doing so, we will continue to use the dataset extracted from the Crime Survey for 

England and Wales, 2013-20141, but this time we will only use a subset of respondents (N=2181), who answered 

questions about how much they worry about crime. Our aim is to determine whether there is an association 

between worrying about having one’s home being broken into (wburgl, 1 "Not at all worried" 2 "Not very worried" 3 

"Fairly worried" 4 "Very worried") and some socio-demographic characteristics of the respondent. The dataset 

includes the following variables: 

 
1 Office for National Statistics, University of Manchester. Cathie Marsh Institute for Social Research (CMIST). UK Data 

Service. (2016). Crime Survey for England and Wales, 2013-2014: Unrestricted Access Teaching Dataset. [data collection]. 

UK Data Service. SN: 8011, http://doi.org/10.5255/UKDA-SN-8011-1 

http://doi.org/10.5255/UKDA-SN-8011-1
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VARIABLE DESCRIPTION 

caseid Case identifier (9 digits) 

sex Gender 

agegrp7 Age grouped 

educat3 Education 

wburgl How worried about having your home broken into? 

 

Descriptive statistics 

NB! If you have already worked through the multinomial regression computer workshop materials, you can 

skip this part, as it is the same. 

First, we will start by displaying the frequencies of the variables of interest. 

➢ fre sex-wburgl 

NB! If Stata does not run the ‘fre’ command, try typing ‘ssc install fre’ first. 

Check the results window.  Scroll down through this output carefully and note what Stata has produced. You will 

get a first insight of the distribution of each variable and the presence/absence of missing values by taking a look at 

the tables. One example is shown below. You can see, for instance, that 10.3% of the respondents report being 

very worried about burglary, whereas 15.2% are not at all worried about it and that there are no missing values for 

this variable. 

 

Now, let’s study the relationship between the response variable and each one of the potential predictors (age, 

gender and education) by producing some cross tabulations and chi-square tests of independence for each of the 

three explanatory variables and the outcome separately. You can use the command below by replacing the text 

<variable> with the relevant variable name. 

➢ tab <variable> wburgl, chi row 
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An example of the output is shown below. It tells you that women are more often than men worried or very worried 

about their houses being broken into. For instance, 11.7% of women are very worried compared to 8.6% of men. 

The association is statistically significant at 1% level (p=0.001) according to the Chi-squared test. 

 

Take a look at all the other tables you have produced as well to get familiar with the data and the associations 

between each explanatory variable and the outcome. 

 

Ordinal Regression with a single predictor 

Now we will fit an Ordinal Regression model. The main differences between this model and the multinomial logistic 

model are:  

1. In the multinomial regression, we model the log of the odds between each category and the reference 

category: log (
𝑝𝑉𝑒𝑟𝑦

𝑝𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙
), and analogously for log (

𝑝𝐹𝑎𝑖𝑟𝑙𝑦

𝑝𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙
) , and log (

𝑝𝑁𝑜𝑡 𝑉𝑒𝑟𝑦

𝑝𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙
) . In the ordinal regression, 

on the other hand, we model cumulative logits. In this same example: log (
𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙)

𝑝(𝑁𝑜𝑡 𝑣𝑒𝑟𝑦 𝑜𝑟 𝐹𝑎𝑖𝑟𝑙𝑦 𝑜𝑟 𝑉𝑒𝑟𝑦)
) ,  

log (
𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 𝑜𝑟 𝑁𝑜𝑡 𝑣𝑒𝑟𝑦)

𝑝( 𝐹𝑎𝑖𝑟𝑙𝑦 𝑜𝑟 𝑉𝑒𝑟𝑦)
),  log (

𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 𝑜𝑟 𝑁𝑜𝑡 𝑣𝑒𝑟𝑦 𝑜𝑟 𝐹𝑎𝑖𝑟𝑙𝑦)

𝑝(𝑉𝑒𝑟𝑦)
).  

2. Both models can be written in terms of an equation for each category of the response variable (without 

including one of the categories). In the multinomial model different intercepts and slopes are allowed for 

each one of these equations. Meanwhile, in the ordinal model different intercepts are allowed but it is 

assumed that the slope (the coefficient for each covariate) is the same in all the equations. This 

assumption is also stated in terms of proportional odds or as parallel lines. 
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To fit the model: 

➢ ologit wburgl ib2.sex 

➢ ologit wburgl ib2.sex, or // use or option to obtain odds ratios 

➢ estimates store om1 

 

The coefficient for men is -0.328. As exp(-0.328) is 0.720, it means that the odds of being in a higher rather than in 

a lower category of worrying about crime are 28% lower among men than among women. This is true for all the 

cumulative odds ratios of this response variable. In practice, this means that men less likely to be in a higher 

response category (i.e. more worried) than in a lower category (i.e. less worried), when compared to women. 

The three equations that characterise this model are: 

log (
𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙)

𝑝(𝑁𝑜𝑡 𝑣𝑒𝑟𝑦 𝑜𝑟 𝐹𝑎𝑖𝑟𝑙𝑦 𝑜𝑟 𝑉𝑒𝑟𝑦)
) = −1.879 + 0.328 × 𝑀𝑎𝑛,  

  log (
𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 𝑜𝑟 𝑁𝑜𝑡 𝑣𝑒𝑟𝑦)

𝑝( 𝐹𝑎𝑖𝑟𝑙𝑦 𝑜𝑟 𝑉𝑒𝑟𝑦)
) = 0.373 + 0.328 × 𝑀𝑎𝑛, 

 log (
𝑝(𝑁𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 𝑜𝑟 𝑁𝑜𝑡 𝑣𝑒𝑟𝑦 𝑜𝑟 𝐹𝑎𝑖𝑟𝑙𝑦)

𝑝(𝑉𝑒𝑟𝑦)
) = 2.029 + 0.328 × 𝑀𝑎𝑛 

Note that the coefficient for gender is positive because the model in Stata is defined with a negative B. These 

equations can be used to calculate the fitted probabilities of the model, or calculated by Stata as below: 

➢ margins sex 

You may wish to calculate some probabilities by hand using the instructions in the first and second videos of this 

resource and compare whether you get the same results as from Stata. 
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Test of parallel lines 

We need to install the user-written command ologit to re-run the model and conduct the test of parallel lines: 

➢ ssc install omodel 

➢ tab sex, gen(gender) // omodel command does not accept the i. 
notation, so we need to create dummy-variables for gender 

➢ omodel logit wburg gender1 

Look at the table containing the test of parallel lines printed below the parameter estimates. 

  

The null hypothesis is that the coefficient of the slope is the same for all the categories of the response variable. In 

this sense, the equations determined by the linear predictor are all parallel because they only differ by the intercept. 

Moreover, note that if there is only one slope for all categories, all the cumulative odds ratios are proportional with 

proportionality constant 𝑒𝐵 as shown above. For this reason, this test is also called test of the proportional odds. 

Using this dataset, we are not able to reject the null hypothesis at 5% of significance, i.e., the model with only one 

slope is reasonable. Had we rejected this hypothesis, we would have to stay with the multinomial model. 

 

Multivariate Ordinal models 

We will add another predictor in addition to gender. We are interested in whether respondent’s age is associated 

with the outcome variable: 

➢ ologit wburgl ib2.sex i.agegrp7 

➢ ologit wburgl ib2.sex i.agegrp7, or 

➢ estimates store om2 

➢ lrtest om1 om2 

The output from the lrtest command gives you the likelihood ratio test of nested models (with and without age) and 

shows you that age should be included in the model. According to the likelihood ratio test, age was statistically 

significant at the 1% level (LR=24.29, p=0.0005). The results of the model are shown below. 
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Let’s interpret the effect of age in this model. When interpreting the results of a dummy-variable with a large 

number of categories, it is rarely of interest to report every single odds ratio for that variable. It is preferable to say 

something about the overall trend, and support that with an example. 

Those in age groups between 25 and 74 were more likely to be more worried about burglary (i.e. in the higher 

categories of the outcome) than the reference group of 16-24 years. For instance, those aged 25-34 had 1.5 times 

the odds of being more worried than those age 24 years or less. The oldest age group (75 years or more) did not 

differ statistically significantly from the youngest group (p=0.670).  

To test the parallel lines assumption, we first create the dummy-variables for age and then run the ‘omodel’ 

command: 

➢ tab agegrp7, gen(agec) 

➢ omodel logit wburgl gender1 agec1 agec2 agec3 agec4 agec5 agec6 

As shown below, the test of parallel lines is not statistically significant (p=0.708) suggesting that we cannot reject 

the null hypothesis that the slope coefficients are the same across response categories. Therefore, we can use 

ordinal regression. 

 

We can also calculate predicted probabilities: 

➢ ologit ib2.sex i.agegrp7 
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➢ margins agegrp7, at(sex==2) 

➢ marginsplot, legend(order(1 "Not at all worried" 2 "Not very worried" 3 "Fairly 

worried" 4 "Very worried")) 

If you compare the predicted probabilities from the ordinal model to the multinomial one, you can get more 

information about how well your model fits.  

➢ mlogit wburgl ib2.sex i.agegrp7, b(1) 

➢ margins agegrp7, at(sex==2) 

➢ marginsplot, legend(order(1 "Not at all worried" 2 "Not very worried" 3 "Fairly 

worried" 4 "Very worried")) 

There are some differences, particularly among the ‘not at all’ and ‘not very’ categories, but none of the 

probabilities are very far from the more precise multinomial model, which suggests that our ordinal model fits 

reasonably well. 

 


