

An introduction to Jupyter Notebooks for Social Science Research

Vernon Gale University of Edinburgh

← → C 🗋 scarc.library.oregonstate.edu/coll/pauling/rnb/index.html

As with many scientists, Linus Pauling utilized bound notebooks to keep track of the details of his research as it unfolded. A testament to the remarkable length and diversity of Dr. Pauling's career, the Pauling Papers holdings include forty-six research notebooks spanning the years of 1922 to 1994 and covering any number of the scientific fields in which Dr. Pauling involved himself. In this regard, the notebooks contain many of Pauling's laboratory calculations and experimental data, as well as scientific conclusions, ideas for further research and numerous autobiographical musings.

<u>Research Notebook 01</u>	<u>Research Notebook 1</u>
1922	1935-1936, 1938-1939
Research Notebook 02	Research Notebook 1
1922-1923, 1932, 1934, 1936, 1973,	1936-1939, 1949, 1952
1985	Research Notebook 1
Research Notebook 03	1935, 1937, 1968
1923-1925	Research Notebook 1
Research Notebook 04	1935-1956
1923-1924, 1928-1930	Research Notebook 1
Research Notebook 05	1939-1941, 1971, 1988

<u>Research Notebook 35b</u>
1938-1939, 1946, 1955, 1968,
1988
Research Notebook 36
1980-1981, 1986-1987
Research Notebook 37
1971, 1983
Research Notebook 38
1980-1981, 1983, 1985, 1989
Research Notebook 39

1986

But on January 10th the stars appeared in the following position with regard to Jupiter; there were two only, and both on the east side

Ori. * * O Occ.

of Jupiter, the third, as I thought, being hidden by the planet.

https://www.youtube.com/watch?v=BmH PoBpZoJ4

Documentation; Portability; Language agnostic; Rich visual outputs; Big data tools; Teaching tools; Collaboration

JUPYTER ncrm_20170116_vg_v1 Last Checkpoint: a minute ago (autosaved)					
File Edit View Insert Cell Kernel Widgets Help	Python [Root] O				
E + % 2 E ↑ ↓ N E C Code ∨ E CellToolbar					
In []:					

In [4]: summarize

In [4]: summarize

Variable	l Obs	Mean	Std. Dev.	Min	Max
case	1,580	517.7411	284.8605	1	1003
femp	1,580	.6455696	.4784918		1
mune	1,580	.0740506	.2619362	0	1
time	1,580	7.2	3.981019	0	13
undl	1,580	.0746835	.2629633	0	1
und5	1,580	.2974684	.4572891	0	1
age	1,580	36.01013	9.114841	18	60

In [4]: summarize

	-+-					
case	1	1,580	517.7411	284.8605	1	1003
femp		1,580	.6455696	.4784918	0	1
mune	L	1,580	.0740506	.2619362	0	1
time	L	1,580	7.2	3.981019	0	13
undl	Ι	1,580	.0746835	.2629633	0	1
	-+-					
und5	L	1,580	.2974684	.4572891	0	1
age	I	1,580	36.01013	9.114841	18	60

The data mirror a real example of data analysed in Davies et al. (1992).

The dataset is a panel of 155 married women.

Davies, Richard B., Peter Elias, and Roger Penn. 'The relationship between a husband's unemployment and his wife's participation in the labour force.'' Oxford Bulletin of Economics and Statistics 54.2 (1992): 145-171.

Iteration 0:	-						
Iteration 1:	-						
Iteration 2:	2						
Iteration 3:	-						
Iteration 4:	log likelih	pod = -878.6	57998				
Logistic regre	ession			Number (of obs	=	1,580
				LR chi2	(2)	=	297.10
				Prob > (chi2	=	0.0000
Log likelihood	d = -878.6799	В		Pseudo I	R2	=	0.1446
			 Z				
	1 = -878.6799		z				
	Coef.			P> z	[95% Co	onf.	
femp	Coef.	Std. Err.	-7.22	P> z 0.000	[95% Ca	onf. 63	Interval]

In [3]: mylogit <- glm(femp ~ mune + und5, data = mydata, family = "binomial")</pre>

```
summary(mylogit)
```

Call: glm(formula = femp ~ mune + und5, family = "binomial", data = mydata)

Deviance Residuals: Min 1Q Median 3Q Max -1.7586 -1.0024 0.6922 0.6922 2.1177

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.30683 0.07442 17.561 < 2e-16 ***

mune -1.70331 0.23585 -7.222 5.12e-13 ***

und5 -1.73352 0.12219 -14.187 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2054.5 on 1579 degrees of freedom Residual deviance: 1757.4 on 1577 degrees of freedom AIC: 1763.4

In [6]: independentVar = ['mune', 'und5', 'Int'] logReg = sm.Logit(df['femp'] , df[independentVar]) answer = logReg.fit()

Optimization terminated successfully. Current function value: 0.556127 Iterations 5

the results are in the oject "answer"

In [9]: answer.summary()

Out [9]: Logit Regression Results

Dep. Variable:	femp	No. Observations:	1580
Model:	Logit	Df Residuals:	1577
Method:	MLE	Df Model:	2
Date:	Fri, 14 Oct 2016	Pseudo R-squ.:	0.1446
Time:	10:13:23	Log-Likelihood:	-878.68
converged:	True	LL-Null:	-1027.2
		LLR p-value:	3.056e-65

	coef	std err	z	P> z	[95.0% Conf. Int.]
mune	-1.7033	0.236	-7.222	0.000	-2.166 -1.241
und5	-1.7335	0.122	-14.187	0.000	-1.973 -1.494
Int	1.3068	0.074	17.561	0.000	1.161 1.453

Another inventive use of the wemp dataset

Using an open street map

I've recently moved to a more commodious office in Buccleuch Place. Here is an example of an open source map on my new hood.

0

Galaxies in the Hubble Deep Field

Lorena A. Barba group

Computational Fluid Dynamics Algorithms *Fluid Mechanics* HIGH-PERFOMANCE COMPUTING CFD Immersed Boundary Methods Biomolecular Physics GPU Computing

PUBLICATIONS

RT @NumFOCUS: Tis the season of giving back! Support NumFOCUS & our projects by donating to our End-of-Year Fundraising Drive: https://t.co... View // Reply // Retweet // Favorite

Donoho does not vouch for & will not cite the computational work of his own students who...refuse to work reproducibly https://t.co/NOIQZ0hTKC

View // Reply // Retweet // Favorite

CODE

Prof. Barba awarded a 2016 Leamer-Rosenthal Prize for Open Social Science

The 2016 Learner-Rosenthal Prizes were announced on 15 December 2016, at the

http://lorenabarba.com/

Open source, interactive data science and scientific computing across over 40 programming languages.

https://jupyter.org/

For more information visit www.ncrm.ac.uk/resources/online