
Script: An Introduction to Factorial Survey Experiments (FSE),  
Part III 
NCRM Online learning resource 

Tamara Gutfleisch, Mannheim Centre for European Social Research (MZES), University of Mannheim 

 

Introduction 

Welcome to Part III of this introductory course to factorial survey experiments. In Part I and II, we have 

learned about the principles underlying factorial surveys, and about the different steps in designing 

and conducting a factorial survey experiment. Now, I will show you some practical examples using 

Stata. Specifically, this part of the online course focuses on checking the data quality and how to 

analyse and interpret the data obtained from factorial surveys. It is not necessarily required that you 

have prior knowledge of Stata, but prior knowledge of any other statistical software (e.g., SPSS or R) 

would be desirable.  

I will first give some background information about the data we are using, which is also listed here. 

This syntax file will be provided as supplementary material.  

For the practical examples, we will use data from the EDYPOLU recruiter survey, which can be used for 

scientific purposes: https://doi.org/10.17605/OSF.IO/ZTB6Y. The EDYPOLU project aimed at examining 

the impact of certain applicant characteristics on recruiters’ hiring intentions in Luxembourg. I jointly 

developed the experimental design together with my former PhD supervisor, Robin Samuel. Detailed 

information on the experimental design, the recruiter survey, and the codebook can be found in 

Gutfleisch and Samuel (2021). The vignette universe of our experimental design comprised 36 

vignettes, which we all used. Thus, no vignette sample was drawn. However, we did use a D-efficient 

blocking technique to divide the 36 vignettes into 6 vignette sets, each including 6 vignettes. Three 

experimental variables were included: gender, unemployment, and nationality of applicants. The 

vignettes looked like hypothetical CV, like I showed you in Part I of this online course. Each respondent 

was randomly assigned to one vignette set or deck, and the order of vignettes across respondents was 

randomised. We used a “personalised” experimental set up, in which each respondent was randomly 

assigned to one unique vignette set before the data collection. However, as I already indicated, we will 

not focus on creating the vignette sample or merging the set up and respondent data, as this is out of 

scope of this short introductory course. You can find more practical examples that are not covered 

here in the supplementary material to the book by Auspurg and Hinz (2015) (➔ 

https://study.sagepub.com/auspurg_hinz/student-resources/ancillary-materials). In the authors’ 

supplementary material, you will find example code of how to construct the vignette sample in SAS, 

examples of how to prepare the set-up data, and how to merge the set-up data and respondent data 

as well as more examples of how to analyse the data. This introductory course is meant to give you a 

first set of tools to help you understand what is important when analysing the data obtained from 

factorial survey experiments and how to interpret the data.  

Relevant variables that we are going to use for these practical examples are:  

• Respondent_ID - Respondent ID 

• sector - Occupational field 

• vigid - Vignette ID (ranges from 1 to 36) 

• vigset - Vignette set, individual vignette sets (i.e., with randomised order) 

• deck - initial vignette sets (ranging from 1 to 6) 

https://doi.org/10.17605/OSF.IO/ZTB6Y


• vignr - Vignette position 

• vigeval_1 - Vignette evaluations 

• vgndr - Vignette gender 

• vuetim - Vignette unemployment 

• vnat - Vignette nationality 

 

Getting started 

Let’s get started! After we have downloaded the data, we upload the scientific use file of the EDYPOLU 

recruiter survey into Stata.  

* @0 Load the data for analysis 

use "..\EDYPOLU_survey_SUF.dta", clear 

The data already combines the experimental set up data and the respondent data. The EDYPOLU 

recruiter survey covered five occupational fields, which can be seen as separate experiments. For this 

course, I will focus on data from the catering field. However, the analyses could also be done in the full 

data set, but you would need to control for the occupational fields in the regression analysis.  

* @1 Select sample 

* Keep only one occupational field 

keep if sector==4 // keep data from the catering sector 

 

Checking the characteristics of the vignette experiment 

Once we have selected our sample, we can start checking the characteristics of the vignette 

experiment. This is an important step before starting any substantial analyses. For example, you want 

to check whether the randomisation has worked, meaning whether the correlations between vignettes 

dimensions are minimised and whether the vignette levels occur with more or less the equal 

frequency.  

Let’s have a look at the frequency of each deck first. In our case, there were six decks in total. 

tab deck // frequency of initial vignette sets 

As can be seen in the results (Table 1), the data set seems to be more or less balanced. There are 

relatively small differences in the frequency between each vignette deck, although deck 5 occurs less 

often than the other decks.  

Table 1: Frequency of vignette sets 

Initial deck ID Frequency Percent 
Cumualtive 
Proportion 

1 78 17.57 17.57 

2 78 17.57 35.14 

3 72 16.22 51.35 

4 72 16.22 67.57 

5 66 14.86 82.43 

6 78 17.57 100.00 



Total 444 100.00   

 

Similarly, we can check the frequency of each vignette in our data. The frequencies are listed in Table 

2 (only absolute frequencies). The results look good, each vignette occurs with more or less equal 

frequency.  

tab vigid // frequency of vignettes 

 

Table 2: Frequency of vignettes 

Vignette ID Frequency 

1 13 

2 13 

3 13 

4 13 

5 13 

6 13 

7 13 

8 13 

9 13 

10 13 

11 13 

12 13 

13 12 

14 12 

15 12 

16 12 

17 12 

18 12 

19 12 

20 12 

21 12 

22 12 

23 12 

24 12 

25 11 

26 11 

27 11 

28 11 

29 11 

30 11 

31 13 

32 13 

33 13 

34 13 

35 13 

36 13 

Total 444 

 



Next, we can check whether the randomisation of the order of vignettes across respondents has 

worked. One way of doing this, is to look at the bivariate correlations between the vignette position 

and the vignette ID and vignette set, respectively.   

** Check whether vignette position correlates with vignette ID or vignette sets 

pwcorr vignr vigid, star(0.05)  

pwcorr deck vignr, star(0.05) 

The correlations are close to zero regarding the vignette IDs (r = 0.018) and zero (r = 0.000) regarding 

the vignette decks, both are not statistically significant on conventional levels. We can later control for 

the vignette position in our regression analyses.  

Next, we can check for level balance. To do that, we look at the frequency of each level of the vignette 

dimensions.  

** Frequencies of levels of each dimension 

tab vgndr // levels of vignette gender 

tab vuetim // levels of vignette unemployment 

tab vnat // levels of vignette nationality 

 

Tables 3, 4, and 5 show the results. As we can see, each level occurs with equal frequency, indicating 

level balance in the data.  

Table 3: Frequency of levels: Vignette gender 

Vignette: Gender Frequency 

Male 222 

Female 222 

Total 444 

 

Table 4: Frequency of levels: Vignette unemployment 

Vignette: Unemployment Frequency 

No unemplyoment 148 

One year unemployed after graduation 148 
One year unemployed at time of 
applicat 148 

Total 444 

 

Table 5: Frequency of levels: Vignette nationality 

Vignette: Nationality  Frequency 

Luxembourgish native 74 

Portuguese foreigner 74 

Luxembourgish-Portuguese foreigner 74 

French border worker 74 

French foreigner 74 

German border worker 74 

Total 444 

 



In the next step, we examine the bivariate correlations of vignette levels. First, we need to calculate 

dummy variables (with the values 1 and 0) for each level of our categorical vignette dimensions.  

// Generate dummies of all levels of categorical vignette dimensions 

tab vuetim, gen(vuetim_) // dummies for vignette unemployment 

tab vnat, gen(vnat_) // dummies for vignette nationality 

Next, we calculate the bivariate correlations (i.e., Pearson’s correlation coefficient).  

// Test bivariate correlations 

pwcorr vgndr vuetim_1-vuetim_3 vnat_1-vnat_6, star(.05) // Pearson's correlation coefficient 

Table 6 shows the results. Since we used the full factorial, all vignette dimensions and levels had a 

correlation of zero and perfect level balance in the experimental set up data. However, it is to be 

expected that we might observe deviations from perfect orthogonality and level balance in our case 

due to refusal by certain respondents to participate. This is because, as I have mentioned, the 

randomisation was done before data collection. Thus, in a small number of respondents, we might 

observe some correlations. Nevertheless, this does not necessarily result in low data quality. Similar to 

design where only a vignette sample is used, deviations from perfect orthogonality and level balance 

are expected. The deviations, however, should be relatively small in the ideal case.  

As can be seen in the results, all bivariate correlations of the dimensions’ levels are close to zero (r < 

0.1), and none of them are statistically significant. Of course, we see some correlations between the 

levels of one vignette dimension. All in all, our data therefore looks good, and we can conclude that 

the experiment has worked.  

 

Table 6: Bivariate correlations of vignette levels 
 vgndr vuetim_1 vuetim_2 vuetim_3 vnat_1 vnat_2 vnat_3 vnat_4 vnat_5 vnat_6 

vgndr 1.00          
vuetim_1 0.02 1.00         
vuetim_2 0.00 -0.50* 1.00        
vuetim_3 -0.02 -0.50* -0.50* 1.00       
vnat_1 0.00 0.02 0.00 -0.02 1.00      
vnat_2 0.02 -0.01 0.00 0.00 -0.20* 1.00     
vnat_3 -0.01 -0.01 -0.01 0.02 -0.20* -0.20* 1.00    
vnat_4 -0.01 0.00 0.00 -0.01 -0.20* -0.20* -0.20* 1.00   
vnat_5 0.00 0.02 -0.02 0.00 -0.20* -0.20* -0.20* -0.20* 1.00  
vnat_6 0.00 -0.02 0.02 0.00 -0.20* -0.20* -0.20* -0.20* -0.20* 1.00 

* p < 0.05 

 

Lastly, we can inspect the distribution of vignette evaluations. In this case, the vignette evaluations are 

the recruiters’ hiring intentions, measured on an 11-point scale ranging from 0 (practically zero) to 10 

(excellent). So far, we did not consider missing values in the data because we wanted to check whether 

the experiment has worked. Respondents who did not participate in the present survey were still 

assigned a vignette set, and it is therefore useful to include these respondents when assessing whether 

the experiment has worked. However, the vignette evaluations have some missing observations. From 

the codebook, we know that value -9 indicates non-response. We first code these observations as 

missing values.  

replace vigeval_1=. if vigeval_1==-9 // define missing values  



We can show a frequency table (Table 7) or, respectively, draw a histogram to inspect the 

distribution of vignette ratings in our sample.  

tab vigeval_1 // show frequencies 

hist vigeval_1, d // draw histogram of vignette evaluations 

First, we look at the frequency table. We can see that we have 300 valid vignette evaluations (Table 

7), and that respondents used the whole answer scale, which is what we want.  The histogram shows 

that the evaluations tend towards higher values on the rating scale and thus is slightly left skewed.  

Table 7: Frequency table of vignette ratings 

Vignette ratings: Hiring intentions Frequency 

0. Practically zero 4 

1 4 

2 8 

3 12 

4 12 

5 33 

6 57 

7 64 

8 60 

9 29 

10. Excellent 17 

Total 300 

 

Figure 1: Histogram of vignette ratings (recruiters’ hiring intentions) 

 

Data analysis and interpretation of results 

After checking whether the experiment has worked, we can start with the analysis of our data. As we 

have learned in Part II of this online course, with mixed designs, the data is hierarchically structured. 

The vignette evaluations of applicant characteristics (i.e. the vignette dimensions) comprise our 

observations on the level 1 (the “individual level”). These vignette evaluations are nested within 

respondents (level 2). Thus, the vignette evaluates within one respondent are not independent from 



each other, which is, however, the assumption underlying ordinary least squared (OLS) regression. The 

standard errors of standard OLS regression would therefore be biased and we need to account for this 

clustering in our data. This can be done by estimated an OLS regression using robust clustered standard 

errors or by estimating multilevel regression analysis (which are essentially random effects models). 

Multilevel modelling separates the error term of the regression analysis in two parts (one for level 1 

and one for level 2) to account for the clustering (Hox, 2010). Due to the experimental design, the 

assumption of this type of models that the variables in the model need to be uncorrelated with 

unobserved characteristics is true for the level 1 variables by design. Therefore, you can either choose 

OLS regression with robust clustered standard errors or multilevel modelling to analyse your data. We 

will do both in this course.  

Let’s start with the OLS regression. We include all our experimental variables in the model and also 

control for the vignette position.  

** Ordinary least squared regression with robust clustered standard errors 

reg vigeval_1 i.vuetim i.vnat vgndr i.vignr, vce(cluster Respondent_ID) 

Table 8 shows the results of the OLS regression. We see for each vignette level their effect on the 

vignette ratings. For example, we see that one year of unemployment at the time of the application 

significantly reduces recruiters’ hiring intentions by 1.8 scale points. We also see that female applicants 

have on average a slightly higher likelihood of being considered for a job in the catering field, since 

being a female applicant increases recruiters’ hiring intentions (i.e., the vignette ratings) by 0.5 scale 

points. We also see that the vignette ratings are on average lower for French and German applicants 

compared to Luxembourgish applicants. Luckily, the vignette order does not seem to have a 

statistically significant effect on the vignette ratings in most cases.     

 

Table 8: Results of OLS regression predicting vignette ratings (recruiters’ hiring intentions) 

 Coefficient Robust clustered 
Standard errors 

Vignette: Unemployment (ref.: No 
unemployment) 

  

One year unemployed after graduation -0.209 (0.203) 
One year unemployed at time of application -1.797*** (0.357) 
Vignette: Nationality (ref.: Luxembourgish)   
Portuguese foreigner -0.486 (0.329) 
Luxembourgish-Portuguese foreigner -0.549 (0.341) 
French border worker -0.876** (0.293) 
French foreigner -0.694* (0.279) 
German border worker -1.135** (0.416) 
Vignette: Female (ref.: Male) 0.472* (0.184) 
Vignette position (ref.: Position 1)   
Position 2 0.378 (0.310) 
Position 3 0.527 (0.317) 
Position 4 0.763* (0.339) 
Position 5 0.148 (0.451) 
Position 6 0.424 (0.311) 
Constant 7.249*** (0.336) 

Robust clustered standard errors in parentheses. N = 300 observations from 50 respondents. * p < .05, ** p < .01, 
*** p < .001 



Finally, we will have a look at the results from a linear multilevel regression analysis. In Stata, this can 

be done using the ‘mixed’ command.  

** Multilevel analysis 

mixed vigeval_1 i.vuetim i.vnat vgndr i.vignr  || Respondent_ID: , var // indicating that the data is 

clustered at the respondent level 

 

Table 9 shows the results. As in Table 8, we see for each vignette level their effect on the vignette 

ratings. As we can see, the results hardly differ between the linear multilevel regression model and the 

OLS regression. A key difference is that in the output of the multilevel regression, we now see two 

variances, one for the vignette level and one for the respondent level. As I have explained, this is 

because multilevel models separate the error term in two parts to account for the clustering in the 

data and to compute correct standard errors. However, this is mostly of interest if you want to analyse 

the variance at each level. I would assume that in most cases, you are interested in interpreting the 

effects of vignette levels on the vignette ratings.  

 

Table 9: Results of linear multilevel regression predicting vignette ratings (recruiters’ hiring 

intentions) 

 Coefficient Standard 
errors 

Vignette: Unemployment (ref.: No unemployment)   
One year unemployed after graduation -0.209 (0.215) 
One year unemployed at time of application -1.797*** (0.218) 
Vignette: Nationality (ref.: Luxembourgish)   
Portuguese foreigner -0.486 (0.308) 
Luxembourgish-Portuguese foreigner -0.549 (0.309) 
French border worker -0.876** (0.305) 
French foreigner -0.694* (0.310) 
German border worker -1.135*** (0.305) 
Vignette: Female (ref.: Male) 0.472** (0.176) 
Vignette position (ref.: Position 1)   
Position 2 0.378 (0.305) 
Position 3 0.527 (0.321) 
Position 4 0.763* (0.305) 
Position 5 0.148 (0.308) 
Position 6 0.424 (0.311) 
Constant 7.249*** (0.351) 

Variance: respondent level 1.133 (0.152) 
Variance: vignette level 2.267*** (0.101) 

Standard errors in parentheses. N = 300 observations from 50 respondents.  
* p < .05, ** p < .01, *** p < .001 

 

This was the last part of this introductory course on factorial survey experiments. Of course, some 

aspects of the research process could not be discussed in detail within the scope of this course, but I 

hope that I was able to provide with some good starting points to create your own research projects 



around factorial survey experiments. As I said, you can find additional references on some of the issues 

we have discussed in this course and beyond in the recommended reading list in the supporting 

material of this course.  

Thank you for your attention and have a good day. 
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