Chapter 15

Cross Classified Models

One of the main uses of multilevel modelling is to account for the underlying
structure in a dataset, whether it be pupils nested within schools or women
nested within communities as seen in the examples so far. In accounting for
the structure we are removing the independence assumption between level
one units from the same level two units and instead partitioning the variance
into variances between the units at the various levels in the dataset. The
examples we have looked at so far have mainly concentrated on two-level
structures but we have considered one three level structure (counties within
regions within nations) in Chapter 11.

Historically most multilevel modelling has assumed a hierarchical or nested
structure for two reasons. Firstly many applications naturally have a nested
structure, for example pupils within classes within schools, or patients within
wards within hospitals. Secondly the maximum likelihood based methods,
for example IGLS, have been designed to work well for nested structures,
as fast inversion routines are available for the block diagonal matrices that
nested structures produce. However, as we will see in the next three chapters,
often the structure of the dataset is not strictly nested. In this chapter we
will consider cross-classified models before considering multiple membership
models (Chapter 16) and spatial models (Chapter 17).

When cross-classified and multiple membership effects are combined we can
produce multiple membership multiple classification (MMMC) models which
are described in detail in Browne, Goldstein & Rasbash (2001a). Detailed
descriptions of likelihood-based methods for both cross-classified models and
multiple membership models are given in Rasbash & Goldstein (1994) and
Rasbash & Browne (2001), while Rasbash & Browne (2002) compare the like-
lihood approaches with the MCMC approach that we use here. In this chap-
ter we will describe what we mean by a classification and a cross-classified
model before considering an education-based example from Fife, Scotland
that is considered in Rasbash et al. (2008, chap. 18).
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15.1 Classifications and levels

We have so far concentrated on different ‘levels’ in a dataset where the defi-
nition of a level has not been explicitly given, but we have been assuming a
nested relationship between levels. For example in education we may have a
three ‘level” dataset with our three levels being pupil, class and school. Here
pupils are nested within classes and classes are nested within schools. This
implies that all pupils in the same class are also in the same school due to
the nesting of the levels. The response variable will be at the lowest level in
the dataset although predictors may be at the higher levels, for example the
effect of class size on individual pupil scores.

Note that if the response was at a higher level than some of the predictors
then these predictors could only be fitted in the model as aggregates. For
example we may have several previous tests scores for each pupil, which
would imply a lower level of time/test below pupil. If our response was exam
score at 16 then we would either fit each previous test as a separate predictor
or fit an average previous test mark, and so for the model the lowest level is
pupil and not test.

In this chapter we will consider the more general definition of a classification.
Having defined our lowest level in the data as the level at which the response
variable is collected then we can define a classification mathematically as a
function, ¢, that maps from the set 6 of N lowest level units to a set & of
size M where M < N, and we define the resulting set ® of M objects as the
classification units. In this chapter we will only consider single membership
classifications, ¢(n;) = m;, Vn; € 6 where m; € ®.

In words, if we consider the educational example earlier then our lowest
level was pupil and the lowest level units are the individual pupils. Both
school and class will then be classifications (functions) that given an in-
dividual pupil will return their respective school and class, and so the sets
of all schools and all classes will be the classification units associated with
the classifications school and class respectively. Note that as these classi-
fications map directly from the lowest level there is no guarantee that the
classifications will be nested, and in fact nested classifications are a special
case of the general ‘cross-classified’ classifications that we consider in this
chapter.

MCMC methods treat each set of classification units (residuals in the model)
as an additive term in the model and hence it is no more complicated (once
the classifications have been calculated) to fit a cross-classified model than
a nested model using MCMC. However there is one restriction and that is
that we need unique classification identifiers. For example if we truly have
a three-level nested model with class 1 in school 1 and class 1 in school 2,
then these two classes will need unique identifiers if this model is fitted as a
cross-classified model to differentiate between the two class 1s.
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15.2 Notation

Browne, Goldstein & Rasbash (2001a) introduce notation for fitting cross-
classified and more complex models based upon the definition of a classifica-
tion. Rather than trying to introduce more complex indices that take account
of the crossings and nestings (as in Rasbash & Browne, 2001) they instead
simply give the response variable subscript ¢ to index lowest level units, and
then use the classification names for the subscripts of random effects. For
example consider the variance components model described first in Chapter
3. This was written there as:

normexam;; ~ N(X B, (2)
normexam;; = fy;jcons + [Bistandlrt;;
Boij = Bo + uoj + €oi;

In the classification notation we would rewrite this as:

normexam; ~ N(X B, Q)

normexam; = (3p;cons; + [istandlrt;
BOi = BO + ué?s)chool(i) + €o;

As there may be many classifications, rather than using different letters for
each, we give a superscript to represent the classification number (note this
starts at 2 as we consider the lowest level as classification 1). To change be-
tween notations we can use the Notation button on the Equations window
that we earlier used for the alternative complex level 1 notation. We will
now consider a cross-classified example from the educational literature.

15.3 The Fife educational dataset

We will consider here an educational example from Fife in Scotland that is
also considered in the User’s Guide to MLwiN (Chapter 18). The data consist
of pupils’ overall exam attainment at age 16 (as with the tutorial.ws dataset
studied earlier) and several predictor variables, including a verbal reasoning
test taken at age 11 and information on social class and parent’s occupation.
The added complexity in the dataset is that we have information on both the
secondary school (ages 12 through to 16) in which the children studied and
the primary school (ages 5 through to 12) they attended prior to secondary
school. Not all the children from a particular primary school will attend the
same secondary school so we have two classifications that are crossed rather
than nested. The data consists of records for 3,435 children from 148 primary
schools and 19 secondary schools.

First we will load the dataset and look at the variable names:
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The Names window will appear as follows:

Column: Name Description Teggle Categorical | Data: View Copy Paste Delete  Categories: View Copy Paste Regenerate | Window: Used columns ¢ Help

~
A verbal ressoning score resulling from tests p they enterad sscondary school
Attainmert score of pupils at age sbdeen

Primary school identifying code.

Pupils’ gender (D=Male, 1=Female}.

Pupils’ social class (scaled from low to high).

Secondary school idertifying code.

Fathers' education.

Choice number of secondary school attended (where 1is first choice, stc).

Wothers' education.

2gewmauooew o

- a

We here see that our response variable (attain) is a score from 1 to 10 that
represents the pupils score on a school leaving exam. The intake ability
is measured by a score in a verbal reasoning test, (vrq) and we also have
predictors that represent gender (sex), social class (sc), father’s education
(fed), mother’s education (med) and the choice of secondary school that
they attend (choice where 1 is first choice and so on).

We can look at the dataset more closely by:

view _ Font Help

i sid(3435) pupil(3435)
1.000 39.000
1.000 37.000
1.000 48.000
1.000 41.000
1.000 7.000
1.000 50.000
1.000 17.000
1.000 8.000
1.000 46.000
1,000 |44.000

1
2
3
4
5
B
7
g
9

1=

The data have been sorted on primary school within secondary school. We
can see here that 8 of the pupils who attended primary school 1 then attended
secondary school 1. If we were to scan down the columns we would find that
the rest of primary school 1 went to two other secondary schools, 45 to
secondary school 9 and 1 to secondary school 18 (to see this quickly type
1355 or 3068 into the goto line box and this will take you to these groups
of pupils). So we can see that school 9 is the ‘main’ secondary school for
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primary school 1 with 83% of pupils attending it. In the entire dataset 59
of the 148 primary schools had all their pupils attend the same secondary
school after leaving primary school and only 288 pupils did not attend their
‘main’ secondary school. So although the dataset structure is not nested it
is close to nested and this helps the likelihood-based methods in the User’s
Guide to MLwiN (see Rasbash & Goldstein, 1994, for details). The degree
of ‘nestedness’ does not matter so much to the MCMC methods and in fact
it is probably easier to distinguish between two classifications if they are less
nested!

As the data are sorted on secondary schools and their effects will have hap-
pened closer (in time) to the exam response of interest we will first con-
sider fitting a two-level model of children within secondary school. We will
however use the classification notation from the start and define the three-
classification structure of the data.

This will have set up the 2 level variance components model and run it using
MCMC. The estimates in the Equations window will be as follows:
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attain, ~ N(XB, ©)
attain, = §, cons,

B,; = 5.608(0.166) + ul)

0.51dn T €oi

[ué?m] ~N(@©, Q) : @)= [0.489(0.210)]

[e] ~NO. @) : @,=[s.98900219)]

PRIOR SPECIFICATIONS
p(B) a1
p(1/Q%)) ~ Gamma(0.001,0.001)
p(1/Q,; ) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 17291.800(3435 of 3435 cases in use)
UNITS:
sid: 19 (of 19) in use

pid: 303 (of 303) in use
Name + - AddTerm Estimates Nonlinear Clear Motation Responses Store Help Zoom 100

Here we see that there is significant variation between the secondary schools
and this accounts for 0.489/(0.489+8.989)x100% = 5.1% of the total varia-

tion in exam marks.

We can compare the DIC for this model with a simpler model with no school
effects, and we see a reduction in DIC of 120 showing this is a much better
model. Also the 19 secondary school effects account for 18.2 —2 = 16.2 effec-
tive parameters so there are distinct differences between secondary schools.

Dbar | D(thetabar) pD DIC

17291.80 17273.61 | 18.19 | 17309.99

17429.27 17427.26 | 2.01 | 17431.28 | (no school effect)

15.4 A Cross-classified model

If we now consider adding in the effects of primary schools this can be done
simply via the Equations window.
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What you have actually just done is fitted a ‘nested’ model of primary school
nested within secondary school using IGLS. This can be confirmed by looking
at the Hierarchy viewer available via the Model menu.

level  range total

L31D:6.k =60f 19
NZ215. N1250

L3ID: 2. k=20f 19
N213, N1133

L31D:3. k=30f 19
N2 14, N1156

L3ID: 4. k=40f 15
N2 14, N1135

L31D: 5.k =50f 13
N217, N1175

L3ID: 7.k =70of 19
N27, N1109

L3ID:8.k=80f 19
NZ12, N1107

L3ID: 5. k=90f 19
NZ10, N1114

L31D:10.k = 10of 19
N217. N13§2

L3ID: 11 k=11cf 13
NZ32, N1234

L3Il 12 k=120 13
NZ223, N1253

L3ID: 13 k=130cf 19
N2 14, N1216

L3ID: 14 k=140f 13
NZ26. N1230

L3015, k=150f 19
NZ214, N1147

L31D: 16,k = 160f 19
NZ10, N1134

L3ID: 17, k=170f 19
N2 16, N1233

L31D: 18,k =180of 19
N2 18, N1257

L3ID: 19, k=190f 19
NZ213, N11M1

Here you can see that MLwiN has treated the individual groups of pupils
that are from the same primary school and secondary school as separate
primary schools, for example the pupils in primary school 1 are treated as
three separate primary schools nested within secondary schools 1, 9 and 18
respectively. This results in 303 rather than 148 primary schools. To fit a
cross-classified model in IGLS instead involves following the procedures given
in Chapter 18 of the User’s Guide to MLwiN.

To fit the model (as cross-classified) using MCMC is however fairly simple.

The window will appear as follows:

Cross Classified Models
Treat levels as crossclassified [

[ Muttiple Classffication level 2 :

[] Spatial Classification ({CAR) level 2 :
[ Muttiple Classification level 3
[[] Spatial Classification (CAR) level 3 ;

Here we now simply have to click in the Treat levels as cross-classified
box and click on the Done button. If we now select the Hierarchy Viewer
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from the Model menu we get the alternative classifications viewer as shown
below.

Classifications (=]

classfication number of units  including missing

sid(3) 19 19
pidi2) 143 148
pupil{1} 3435 3435

Here we see that this viewer shows we have only 148 primary schools as we
are now taking account of the cross-classifications. After running the model
by clicking on the Start button we will get the following estimates:

Equations EE.
attainj ~N(XB, Q)
attain, = §, cons,
= (3) 2)
By; =5.504(0.190) + Uy iy T U peay T o

[zf{?;dm] ~N(O, %) : Q¥ = [0.414(0.210)]

[“Eﬁim] ~N(©, £2) : 9P= [1.153(0.215)]
[ea] ~NO. 2, : 2,=[8.1200202)]

PRIOR SPECIFICATIONS
p(By o 1
p(1/Q) ) ~ Gamma(0.001,0.001)
p(1/Q) ) ~ Gamma(0.001,0.001)
p(1/2, ;) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 16940.564(3435 of 3435 cases in use)
UNITS:
sid: 19 (of 19) inuse
pid: 148 (of 148) in use

Mame + - AddTerm Estimates Monlinear Clear Motation Responses Store Help Zoom 100 -

The estimates are fairly similar to those achieved using IGLS in the User’s
Guide to MLwiN although the variances for primary school (1.15 versus 1.12)
and particularly secondary school (0.41 versus 0.35) are higher. This is due
to the difference between mean estimates and mode (ML) estimates for the
skewed variance parameter posterior distributions. The trajectory plots con-
firm this for the secondary school variance:
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MCMC Diagnostics - sid : cons/cons IE“E‘!

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (116384558 )
when q= (00250975 ).r = 0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 15864

when k = 2 sigfigs and alpha = 0.05

OOt B |

Summary Statistics
param name : Q) posterior mean = 0.414 (0.005) D =0.210 mode = 0.352
quantlles : 2.5% = 0.142. 5% =0.165, 50% =0374. 95%=0.790, 97.5% =0.929

3 iterations storing E}T it ﬂﬁﬁﬁr. Effective Samole Size (ESS) = 1111.
Update Diagnostic Settings Help

We can also see that primary school is actually more important in predicting
the attainment score than secondary school. One possible reason for this
is that secondary schools are generally larger (see Goldstein, 2003). Here
primary school explains 1.15/(0.4141.15+8.12) x100% = 11.9% of variation
while secondary school only explains 0.41/(0.41+1.1548.12)x100% = 4.2%.
The DIC diagnostic again shows that this model is an improvement with a
reduction in DIC of over 250.

Dbar | D(thetabar) pD DIC
16940.56 16833.40 | 107.16 | 17047.73 | (with primary school)
17291.80 17273.61 | 18.19 | 17309.99 | (without primary school)

15.5 Residuals

As with nested models we can work out residuals for the various levels of
our model. This may be done via the Residuals window available from the
Model menu. We will look firstly at secondary school residuals:

e On the Residuals window, change the level box to 3:SID.

e (lick on the Calc button.

e (Click on the Plots tab, and if not selected, select residual x rank.
e (lick on the Apply button.

The plot will then appear as follows:
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Here we see the lowest ranked secondary school has a very low residual and
may be an outlier. Clicking on the graph on this point we get:

clicked poirt {1,0351966873706 -1 39627133325982)
nearest data point = (1,-1.39068542492771). fem number

[ eawe] [ ]

ik on a peint on 2 graph

showing that this is secondary school 19. We will revisit this plot after adding
in other variables. If we now look instead at the primary schools:
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Graph display: 10 (==

cons

rank

Here we see the 148 primary school residuals. Here there is no evidence of
outliers. If we click on the lowest residual (rank 1) we get the following:

Graph options x
Identify point [Tiles | Scale |

clicked point (0.641078838174274 -2.16113424705753)
nearest data point = (1,-2.12352978736331), item number
139, in columns {c305.c300)

: Muttileved Fittering :

In graphs In model

Leave out

Reset all

highlight (style 1) ! Absorb into dummmy
highlight (style 2) Reset all

highlight (style 3)

highlight (style 4)
| highlight (style 5) i

Include

| 2ooly || setsntes | [ ety |

Help | Click on a poirt on a graph

So we see here that the lowest ranked primary school is school number 139
and that even though the data are not nested the residuals screen can identify
correctly the primary school. Note however that unlike nested models we do
not get a level 3 identifier as primary school is not nested within secondary

school.

15.6 Adding predictors to the model

We have so far not considered any of the available predictors in our model.
We will firstly consider the effect of intake score (VRQ) in our model.
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The estimates produced are as follows:

attain, ~ N(XB, Q)
attain, = §, cons, + 0.160(0.003)vrq,
By = -10.033(0.278) 4 uf ) s o+ 1) s diy

3 )P ) B
[”f),zm] ~N(©, ) : o0 = [0.016(0.019)]

@) @5 . 0@ _
[”o,mg] <TN{y, =) 5 = [0.278(0.061)]

[em] ~N(O0, Q) : @ = [4.260(0.105)]

PRIOR SPECIFICATIONS

p(By e 1

pB)al

p(1/Q) ) ~ Gamma(0.001,0.001)

p(1/Q ) ~ Gamma(0.001,0.001)

p(1/Q,, ;) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 14724.865(3435 of 3435 cases in use)
UNITS:

sid: 19 (of 19) in use

pid: 148 (of 148) in use
Marme + - AddTerm Estimates Monlinear Clear Motation Responses Store Help Zoom 100

The predictor, vrq, explains not only a large amount of the residual variation
but also a large amount of the differences between secondary schools and
between primary schools. Of the remaining variation, 6% is explained by
primary schools and less than 0.4% by secondary schools. The DIC diagnostic

gives:

Dbar | D(thetabar) pD DIC
14724.86 14644.21 | 80.66 | 14805.52 | (with vrq)
16940.56 16833.40 | 107.16 | 17047.73 | (without vrq)
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which shows a reduction in DIC of over 2000! It is also interesting that the
effective number of parameters is reduced and this is clearly because VRQ is
explaining many of the differences between secondary schools and between
primary schools.

We can continue adding in the other predictor variables and retaining signif-
icant predictors. In this case all predictors tested apart from gender (SEX)
are significant. The model with all significant predictors can be obtained by:

When the 5,000 iterations have been run we get the following estimates:

atlain‘. ~N(AB, Q)
attain, =, cons, + 0.155(0.003)vrq, + 0.027(0.003)sc, + 0.215(0.092)fed, +
0.219(0.086)medi +-0.1 18(0.054}choicei
_ ; (3) (2)
By; =-9.726(0.294) + Uy s T 4o piay T i

[ 3N . O
_uf;};am] ~N(@, ) : o= [0.014(0.01?)]

[ QN . o)
_uo,pm;:j] SR, ) 5 Q= [0.206(0.052)]

o] ~NO. @) : @,=[1171(0.105)]

Deviance(MCMC) = 14651.560(3435 of 3435 cases in use)
UNITS:
sid: 19 (of 19) in use

pid: 148 (of 148) in use
Mame + - AddTerm Estimates MNonlinear Clear MNotation Responses Store Help Zoom 100

Here we see that on average a pupil’s attainment is higher if they come from
a higher social class, if their parents are better educated or if the school they
attend is their first choice. Adding the additional predictors has the effect of
reducing the DIC diagnostic by 80 and again reducing the effective number of
parameters slightly, suggesting more of the differences between schools have
been explained by the additional predictors.
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Dbar | D(thetabar) pD DIC
14651.56 14575.02 | 76.54 | 14728.10
14724.86 14644.21 | 80.66 | 14805.52

CHAPTER 15.

(without additional predictors)

The secondary school variance is very small and if we now look at the resid-
uals plot of the school residuals against rank (see instructions earlier on how
to produce this) we see that the residual for school 19 is still lowest and looks
like an outlier. (Note that a number of error messages may crop up during
the estimation here. It is safe to ignore them by clicking the OK button.)

We will therefore consider fitting a dummy variable for school 19 and remov-
ing secondary school from the model.

After the 5,000 iterations have completed our estimates are as follows:
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Equations E@l
attain, ~ N(XB, Q)
attain, = B, cons, + 0.155(0.003)vrg, + 0.027(0.003)sc, + 0.214(0.092)fed, +
0.225(0.086)med. + -0.124(0.056)choice, + -0.632(0.244)school 19,
_ (2}
By = -9-646(0.290) + gy . + €,

) @y . 0@ =
[Hn,pm] =0, 817) : E= [0.209(0.053)]

[ea] ~NC©. 2) : @,=[11680.103)]

Deviance(MCMC) = 14649.388(3435 of 3435 cases in use)
UNITS:
pid: 148 (of 148) in use

Mame + - AddTerm Estimates [Monlinear Clear Motation Responses Store Help Zoom 100 -

We can see that school 19 has a significant negative effect on attainment and
if we look at the DIC diagnostic we see an improvement in DIC diagnostic
of 3.4.

Dbar | D(thetabar) pD DIC
14649.39 14574.03 | 75.36 | 14724.74 | (with secondary school 19 only)
14651.56 14575.02 | 76.54 | 14728.10 | (with all secondary school effects)

So in adding the predictors to our model we have explained all the secondary
school variation down to a difference between school 19 and the rest of the
secondary schools. This of course means that, for the Fife dataset, we now
no longer need to fit a cross-classified model. Therefore if we were to re-
sort the data on primary school we could have fitted the final model directly
using IGLS or MCMC. Some people may think this is disappointing but with
only 19 secondary schools to start with it is unlikely that we will find much
variation and in fact we now have a more parsimonious model. It may be
interesting for the researchers to now go and investigate why school 19 was
a potential outlier.

15.7 Current restrictions for cross-classified
models

As has been shown in this chapter it is now possible to quite easily fit cross-
classified models in MLwiN using MCMC, although not all features have
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been updated to account for these models. For example currently the Pre-
dictions window does not account for cross-classified random effects and will
therefore give error messages if it is used. It should also be noted that the
starting values that MCMC gets for the residuals will be based on the values
obtained from the nested model and so will often be meaningless. It is possi-
ble by running the MCMC and other commands in the Command interface
window to fit the separate IGLS two-level models and store these residuals in
columns to be used as starting values, but generally the MCMC routines are
robust to the nested model starting values. Currently cross-classified models
can be fitted using IGLS, but only via additional commands that transform
the cross-classified model into a constrained nested model.

Chapter learning outcomes




