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Lecture outline

1. In lecture 1 we introduced cross-classified models and the practical example

2. In this lecture we fit models to the Fife dataset and also the following:

3. Notation and classification diagrams

4. The effect of ignoring cross-classification

5. Variance Partition Coefficients and Intra-Class Correlation Coefficients

6. Including predictor variables in cross-classified models

7. In lecture 3 we will look at extensions to different application areas and more 
levels of crossing.



Recap: Fife Education Dataset

• Dataset from Fife in Scotland that was used by Rasbash and Goldstein (1994) 
when they first introduced extensions of the IGLS algorithm for cross-classified 
models.

• Dataset contains 3,435 students from 19 secondary schools and 148 primary 
schools

• The response is a total attainment score based on national examinations taken 
at the end of compulsory schooling (age 16) which ranges from 1 to 10

• Dataset has several student level predictors (mother and father education, 
verbal reasoning intake score, choice of school, social class, gender) that can be 
used to explain variation in attainment.



Cross-classified model

• Model 1 is a cross-classified variance-components model

𝐚𝐭𝐭𝐚𝐢𝐧𝑖 = 𝛽0 + 𝑢𝐬𝐢𝐝 𝑖
3

+ 𝑢𝐩𝐢𝐝 𝑖
2

+ 𝑒𝑖

𝑢𝐬𝐢𝐝 𝑖
3

~N 0, 𝜎𝑢 3
2

𝑢𝐩𝐢𝐝 𝑖
2

~N 0, 𝜎𝑢 2
2

𝑒𝑖~N 0, 𝜎𝑒
2

• We have written the model in classification notation as standard 
hierarchical notation (𝑖𝑗𝑘) breaks down in non-hierarchical models

– 𝑖𝑗𝑘 implies unit 𝑖 is nested in cluster 𝑗 in supercluster 𝑘

– Primary and Secondary Schools are both conceptually at level 2



Classification notation

• In classification notation, the index 𝑖 uniquely identifies the lowest level units

• The (2) and (3) superscripts distinguish the different higher classifications

• The 𝐬𝐢𝐝 𝑖 and 𝐩𝐢𝐝 𝑖 subscripts are classification functions which return the 
secondary school attended and primary school attended by student 𝑖

• So if student 1 attends secondary school 5 having attended primary school 17 
we would have

𝐬𝐢𝐝 1 = 5, 𝐩𝐢𝐝 1 = 17

and the model equation for student 1 would be written as

𝐚𝐭𝐭𝐚𝐢𝐧1 = 𝛽0 + 𝑢5
3
+ 𝑢17

2
+ 𝑒1



Classification diagrams

• Classification notation provides no information on the hierarchical, crossed or 
multiple membership structures present in the data

• Models should therefore be presented with classification diagrams which 
provide simple summaries of data structures (c.f., units diagrams)

• Classification diagrams have one node for each classification in the model

– Single arrows indicate nested structures

– Unconnected nodes indicate crossed structures

secondary school primary school

student



Illustration of the cross-classified model

• Consider again the model equation 
for student 1

𝐚𝐭𝐭𝐚𝐢𝐧1 = 𝛽0 + 𝑢5
3
+ 𝑢17

2
+ 𝑒1

• Note how the secondary and 
primary school effects are assumed 
additive

• It is possible to add a random 
interaction effect classification, but 
we will not explore this here

𝛽0

𝑢17
2

𝑢5
3

𝑢5
3
+ 𝑢17

2

𝑦𝑖

𝑒1



Implications of number of units at each 
classification

• There are 19 secondary schools with an average of 181 students per school

– We will not reliably estimate the between-secondary variance 𝜎𝑢 3
2

– We will reliably estimate the individual secondary school effects 𝑢𝐬𝐢𝐝 𝑖
3

• There are 148 primary schools with an average of 23 students per school

– We will reliable estimate the between-primary variance 𝜎𝑢 2
2

– We will estimate the individual primary school effects 𝑢𝐩𝐫𝐢 𝑖
2

less reliably 

than we do the secondary school effects



Cross-classified model

• Model 1 is a single-level model with no covariates

• Model 2 is the cross-classified variance-components model

• Model 2 fits the data significantly better than Model 1 (DIC drops by 383.6)

• Approximately 16% of the variation is due to schooling groups.

Model 1 Model 2

Parameter Estimate Std. Err. Estimate Std. Err.

𝛽0 Intercept 5.679 0.052 5.504 0.190

𝜎𝑢 3
2 Secondary variance − − 0.414 0.210

𝜎𝑢 2
2 Primary variance − − 1.153 0.215

𝜎𝑒
2 Student variance 9.363 0.227 8.120 0.202

DIC 17431.3 17047.7



Can we ignore the primary school effects?

• Model 3 is the two-level students-within-schools variance-components model

• Ignoring the primary school effects increases the DIC by 262.3

– The primary school effects are significant, even after adjusting for 
secondary schools

– Students who attended the same primary are significantly more alike than 
students from different primaries and this is not simply because children 
from the same primary typically attend the same secondary school

Model 2 Model 3

Parameter Estimate Std. Err. Estimate Std. Err.

𝛽0 Intercept 5.504 0.190 5.608 0.166

𝜎𝑢 3
2 Secondary variance 0.414 0.210 0.489 0.210

𝜎𝑢 2
2 Primary variance 1.153 0.215 − −

𝜎𝑒
2 Student variance 8.120 0.202 8.989 0.219

DIC 17047.7 17310.0



Can we ignore the secondary school effects?

• Model 4 is the two-level students-within-neighbourhoods model

• Ignoring the school effects increases the DIC diagnostic by 32.8

– The secondary effects are significant, even after adjusting for the primary 
previously attended

– Students from the same secondary are significantly more alike than 
students from different secondaries and this is not simply because children 
from the same school are more likely to have studied in the same primaries

Model 2 Model 4

Parameter Estimate Std. Err. Estimate Std. Err.

𝛽0 Intercept 5.504 0.190 5.622 0.113

𝜎𝑢 3
2 Secondary variance 0.414 0.210 − −

𝜎𝑢 2
2 Primary variance 1.153 0.215 1.248 0.215

𝜎𝑒
2 Student variance 8.120 0.202 8.203 0.202

DIC 17047.7 17080.5



VPCs and ICCs

• Reconsider the Model 2 results. The secondary school-level VPC (and ICC) is

VPC 3 ≡ ICC 3 =
𝜎𝑢 3
2

𝜎𝑢 3
2 + 𝜎𝑢 2

2 + 𝜎𝑒
2 =

0.414

0.414 + 1.153 + 8.120
= 0.043

• The primary school-level VPC (and ICC) is

VPC 2 ≡ ICC 2 =
𝜎𝑢 2
2

𝜎𝑢 3
2 + 𝜎𝑢 2

2 + 𝜎𝑒
2 =

1.153

0.414 + 1.153 + 8.120
= 0.119

• The secondary and primary school combined VPC (and ICC) is

VPC 2,3 ≡ ICC 2,3 =
𝜎𝑢 3
2 + 𝜎𝑢 2

2

𝜎𝑢 3
2 + 𝜎𝑢 2

2 + 𝜎𝑒
2 =

0.414 + 1.153

0.414 + 1.153 + 8.120
= 0.162

• There are stronger educational disparities across the 148 primary schools than 
there are across the 19 secondary schools



Including level-1 covariates

• As you will see in the practical there are several predictor variables and we will 
here include a prior test (VRQ), social class, father’s and mother’s education 
and the choice of school (where 1 is 1st etc.)

𝐚𝐭𝐭𝐚𝐢𝐧𝑖 = 𝛽0 + 𝛽1𝐯𝐫𝐪𝑖 + 𝛽2𝐬𝐜𝑖 + 𝛽3𝐟𝐞𝐝𝑖 + 𝛽4𝐦𝐞𝐝𝑖 + 𝛽5𝐜𝐡𝐨𝐢𝐜𝐞𝑖
+𝑢𝐬𝐢𝐝 𝑖

3
+ 𝑢𝐩𝐢𝐝 𝑖

2
+ 𝑒𝑖

𝑢𝐬𝐢𝐝 𝑖
3

~N 0, 𝜎𝑢 3
2

𝑢𝐩𝐢𝐝 𝑖
2

~N 0, 𝜎𝑢 2
2

𝑒𝑖~N 0, 𝜎𝑒
2



Including level-1 covariates (cont’d)

• The covariates explain 97% of the secondary school variance in raw 
attainment, 82% of the primary variance and 49% of the student variance

• This suggests that the wide educational and social inequalities between 
secondary and primary schools can be largely explained by the predictors

Model 2 Model 5

Parameter Estimate Std. Err. Estimate Std. Err.

𝛽0 Intercept 5.504 0.190 -9.726 0.294

𝛽1 VRQ score − − 0.155 0.003

𝛽2 Social Class − − 0.027 0.003

𝛽3 Father’s Education − − 0.215 0.092

𝛽4 Mother’s Education − − 0.219 0.086

𝛽5 Choice − − -0.118 0.054

𝜎𝑢 3
2 Secondary variance 0.414 0.210 0.014 0.017

𝜎𝑢 2
2 Primary variance 1.153 0.215 0.206 0.052

𝜎𝑒
2 Student variance 8.120 0.202 4.171 0.105

DIC 17047.7 14728.1



Examining random effects:
Q-Q plots and caterpillar plots

Secondary
Schools

Primary 
Schools

Note outlier 
school 19



Dummying out secondary school 19

• In the last model we can see that most of the secondary school variance is 
explained and in fact 1 school (school 19) is an outlier. We could therefore try 
and replace the secondary random effects with 1 fixed effect dummy for that 
school:

𝐚𝐭𝐭𝐚𝐢𝐧𝑖 = 𝛽0 + 𝛽1𝐯𝐫𝐪𝑖 + 𝛽2𝐬𝐜𝑖 + 𝛽3𝐟𝐞𝐝𝑖 + 𝛽4𝐦𝐞𝐝𝑖 + 𝛽5𝐜𝐡𝐨𝐢𝐜𝐞𝑖
+𝛽6𝐬𝐜𝐡𝐨𝐨𝐥𝟏𝟗𝑖 + 𝑢𝐩𝐢𝐝 𝑖

2
+ 𝑒𝑖

𝑢𝐩𝐢𝐝 𝑖
2

~N 0, 𝜎𝑢 2
2

𝑒𝑖~N 0, 𝜎𝑒
2

• Note here that removing the secondary school effects means this is no longer a 
cross-classified model! The model is a two-level model.



Dummying out school 19 (cont’d)

• Here we see a significant negative effect for school 19 and a reduction in DIC so 
a marginal better (as more parsimonious) model.

Model 5 Model 6

Parameter Estimate Std. Err. Estimate Std. Err.

𝛽0 Intercept -9.726 0.294 -9.646 0.290

𝛽1 VRQ score 0.155 0.003 0.155 0.003

𝛽2 Social Class 0.027 0.003 0.027 0.003

𝛽3 Father’s Education 0.215 0.092 0.214 0.092

𝛽4 Mother’s Education 0.219 0.086 0.225 0.086

𝛽5 Choice -0.118 0.054 -0.124 0.056

𝛽6 School 19 − − -0.632 0.244

𝜎𝑢 3
2 Secondary variance 0.014 0.017 − −

𝜎𝑢 2
2 Primary variance 0.206 0.052 0.209 0.053

𝜎𝑒
2 Student variance 4.171 0.105 4.168 0.103

DIC 14728.1 14724.7



Summary

• In this lecture we have fitted several cross-classified models to the Fife dataset

• We have introduced new notation and diagrams to represent cross-classified 
structures

• We have shown how to extend the ICC and VPC residual clustering statistics to 
cross-classified models

• We have fitted predictor variables to the model and shown how they explain 
different sources of variation.

• We have shown that in this example due to an outlying secondary school, if we 
dummy out this school we can collapse our model to a two-level nested model.

• In the third lecture we will look at further applications of cross-classified 
models that illustrate new extensions.


