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Hi everyone, my name is Heini Vaisanen, I work at the University of Southampton and today I will 

talk to you about interactions in binary logistic regression. 

So the outline for today's lecture is we will talk about interactions and how to interpret them using 

predictive probabilities and then we will talk about how to interpret interactions using odds ratios. 

Our example today is a relatively simple example of a regression model, a logistical question model 

where we want to study that whether the probability of having access to a car, varies by gender. Our 

response variable or our and dependent variable is whether someone normally has access to a car, 

yes or no, and we have three explanatory variables, gender, whether someone is a man or a woman, 

whether they are alone, married, or cohabiting, so their martial status and finally their age as an 

continuous frame. 

Here are our model results both in low good scale and odds ratios. As you can see from where the 

arrow is pointing, we have added an interaction between gender and and marital status. So the only 

variable in this model that is not involved in the interaction effect is age and therefore the 

interpretation of age is exactly the same as you would have in any logistic regression model without 

interactions and so we will not talk about that. Instead we will talk about how might we go about 

saying something about the relationship between the probability of having access to a car, gender 

and marital status. We will first look at this by calculating predicted probabilities, and for that 

purpose it is quite useful to figure out what our model equation in the logit scale is. So basically the 

logarithm of the odds and that we're interested in, or the logic of the probability, on the left hand 

side equals our intercept and then all the coefficients and the associated estimate values for each of 

the coefficient. So we have coefficients for gender, age, marital status, and then the interaction 

effects for women who are married and women who are cohabiting. So when it comes to our 

reference categories this means that for gender, the reference category is man, and for marital 

status the reference category is people who live alone. 

So the interpretation of marital status and gender is a bit tricky because there's the interaction 

effect, and about 90% of the time, I'd say the easiest way to interpret an interaction in a logistic 

regression model is to calculate the probabilities for a range of different values that we might be 

interested in and then cut them in a table and use that to interpret the results. 

So here we're interested in the interaction between gender and marital status. So we will vary these 

two variables and calculate different probabilities for different levels of gender and marital status, 

but we will keep age constant because we're not really, we're just controlling for age, but we're not 

really interested in the effect of age, so we're just going to use the average age for every probability 

that we count. The average age in this data happens to be 46.21 years so that's what we're plugging 

for age every time. So if you want to calculate the probability of normally having access to a car for a 

man who is living alone and who is of average age in this data, this is how our equation looks like. So 

as you might remember from the previous lecture we calculate predicted probabilities by 

exponentiating the equation of interest, dividing that by 1 plus the same thing. So the equation of 

interest in this case means that we take into account the intercept, which we always take into 

account, and then we take into account the coefficient for age. The reason that we don't take 

anything else into account, we can see here, we actually don't have anything in our model equation 

for men, or for people who live alone, because those were the reference categories for our tiny 

variables. The coefficient for age is minus 0.035, so that means that we multiply that by the average 



age which is 46.22, and then that is our equation. When we solve this we get 0.672, so that means 

that the probability of normally having access to a car for a man who lives alone and is of average 

age is around 67%. 

If you wanted to calculate the probability for a married man of average age to have an access to a 

car, we would have to take into account more things. So when we plug in numbers for our equation 

we would take, again, into account the intercept and then the effects for age, which are the things 

that don't vary actually when we are calculating these probabilities in this example, and then in 

addition we would take into account the effect of being married. So because we are talking about 

men here, we only need to worry about the coefficient associated with being married, so the 1.608, 

because men are not involved in the interaction effect that we have in the last two rows here, 

because they are the reference category for gender. If we had been interested in calculating the 

predicted probability for a married woman, we would have had to take into account the coefficient 

for married, and then the coefficient for the interaction between being a woman and being married, 

so the 0.476. If we solve this equation for married men we get 0.911 which means that the 

probability of having access to a car for a married man of average age is about 91%. 

If you use the same logic to calculate the probabilities for every different possible combination of 

marital status and gender that we had in this data, this is the following the table that we would get 

for people who were average, of average age in this data. The ones that I've highlighted with red are 

the ones that we calculated and the rest are probabilities that you could try and calculate yourself by 

hand and see if you get the same result. When it comes to the interpretation of the interaction 

effect, now it's much easier to do than it would have been by just looking at the odds ratios or the 

local values in our regression table. We can see that the probability that a single man or a man who 

lives alone of having access to a car is around 67%. For a woman who lives alone this probability is 

around 52%, so much lower than for a man who lives alone. However, if we look at married men and 

married women the probability of having access to a car is very similar, so it's 91% for married men 

and 90% for married women. The same goes for cohabiting men and women, so the probability of 

having access to a car for a cohabiting man is about 77% and about 78% for women, and that means 

that the interaction here, is really comes from the single category. So there is a quite a big difference 

between the two genders in the first category of those who live alone, but as soon as we have 

people with partners these gender differences disappear and that's our interaction effect. 

Now we could have also ignored predictive probabilities and used the odds ratio to interpret these 

interactions, however, this is usually a bit complicated so I would, I normally just use predictive 

probabilities, but in case you want to know how this works without ratios I will show you. So if we 

want to know what are the odds that a man has access to a car, we are lucky in the sense that we 

don't have to worry about the interaction effect because men was the reference category here, so 

we can ignore their interaction for now. So if we want to know what the odds are that a married 

man has access to a car, we just look at the odds ratio row for married, and we can see that their 

probability of having access to a car are about five times higher than the probability, sorry the odds 

of a single man having access to a car, so these are odds not probabilities. When it comes to 

cohabiting men we can again, just look at the odds ratio that we see in the cohabiting row, and we 

can say that the odds for a cohabiting man to have access to a car are about 1.63 times higher than 

the odds of a single man when we're controlling for age. The reason that these odds ratios only 

correspond to men now is that we have this interaction effect that we need to take into account if 

we are talking about women. 

So what are the odds that a woman has access to a car? If you're talking about single women, again, 

we can ignore, we can keep ignoring the interaction effect because single, or living alone is the 



reference category for marital status, so there is no interaction effect associated with the 

combination of being woman and living alone. We can just look at the odds ratio table and we can 

say that the odds for a single woman to have access to a car, are about half of the odds of a single 

man when we control for age. When we are interested in women who are married or cohabiting 

then things get a bit more complicated. So let's look at married women. So I'm going to claim that 

the odds for a married woman of having access to a car are about 4.3 times higher than the odds of 

a single man when we control for age, and you might be wondering how I came up with this because 

there is no 4.33 anywhere in the table. Well when we are looking at the odds for married women, 

we first need to take into account the odds for women, but remember that this now only 

corresponds to single women because we have the introduction effect in the model as well. So that's 

why we need to also take into account the effect of being married and the interaction effect of being 

both woman and married, and then we multiply all of these things together, so we multiply 0.54 

times 4.99 which is the coefficient for married, times 1.61 so that's the coefficient for the interaction 

effect, and when we calculate this we get 4.33 and that's how I came up with that odds ratio. We 

can do the same thing for cohabiting women, but then we take into account the odds ratios for 

cohabiting people and the interaction for women times cohabiting. If we do that the odds ratio that 

we get from the calculation is 1.76, you could try do this in your wrong time by hand and make sure 

that you get the right result. And if we then put all of these odds ratios in a table this is how it looks 

like, and essentially the interpretation is very similar to what we saw with the probabilities, so the 

odds for a married man and a married woman of having access to a car are very similar, as are the 

odds for a cohabiting man and a cohabiting woman to having access to a car, again very similar, but 

if we compare women who live alone and men who live alone, its much more likely that a man has 

access to a car than a woman and that is our interaction effect in this model. 


