Introduction to AZTool software

Professor David Martin
AZTool: What is it for?

• Aggregation of building block polygons into a tract polygons to best meet design criteria
• Iterative recombination of building blocks from many random starting points to produce a “best” solution, given a specified number of iterations
• One of a range of software implementations for automated zone design that have included Sage, ZDES, ZD2k, AZM
AZTool history

• Developed by David Martin, Samantha Cockings and Andrew Harfoot at the University of Southampton

• Originally based on Openshaw’s (1977) Automated Zoning Procedure (AZP)

• Some of the functionality previously available as a Visual Basic 6 program called AZM

• Programmed in .NET environment – should run on any modern Windows PC, freely downloadable
Input files (1)

• A set of building blocks and associated data. These are specified as .aat and .pat files
 • The arc attributes describe which building blocks are contiguous
 • No coordinates are needed, but the contiguity information and attributes of each polygon relevant to the design criteria are required
Input files (2)

• Attributes for each building block might include:
 • Population (to be used as a target and/or min/max thresholds)
 • Region (e.g. a larger area within which zones are to be constrained)
 • Homogeneity variables (e.g. tenure or accommodation type, for designing zones which are as internally homogenous as possible)
AZTImporter

• If needed, the AZTImporter program will generate .aat and .pat files from the widely-used ESRI Shapefile GIS format
<table>
<thead>
<tr>
<th>FID</th>
<th>Shape*</th>
<th>AREA</th>
<th>PERIMETER</th>
<th>BBHOM2_ID</th>
<th>BBPOP</th>
<th>OWNOC</th>
<th>PRENT</th>
<th>HARENT</th>
<th>DET</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>0</td>
<td>100</td>
<td>78</td>
<td>12</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>Polygon</td>
<td>40000</td>
<td>800</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>4</td>
<td>100</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>5</td>
<td>100</td>
<td>70</td>
<td>10</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Polygon</td>
<td>20000</td>
<td>400</td>
<td>7</td>
<td>100</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>9</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Polygon</td>
<td>30000</td>
<td>800</td>
<td>11</td>
<td>75</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Parameter file

- An XML file containing the program run parameters. This can be edited, saved and re-used.
- Contains all necessary program control parameters for setup, specification and output
- For use in batch mode using a Windows Batch File
<?xml version="1.0" encoding="UTF-8"?>

 <InputPATFile>C:\AZT_Demo\bbhom2.pat</InputPATFile>
 <InputAATFile>C:\AZT_Demo\bbhom2.aat</InputAATFile>
 <Header>true</Header>
 <IDIndex>1</IDIndex>
 <RegionIndex>0</RegionIndex>
 <RegionToUse>ALL</RegionToUse>
 <RespectRegions>false</RespectRegions>
 <TargThresholdVar>
 <Name>Population</Name>
 <FileIndex>5</FileIndex>
 <TargetSet>true</TargetSet>
 <Target>300</Target>
 <Tolerance>100000</Tolerance>
 <Weight>100</Weight>
 <MinThreshSet>true</MinThreshSet>
 <MinThresh>100</MinThresh>
 <MaxThreshSet>true</MaxThreshSet>
 <MaxThresh>625</MaxThresh>
 </TargThresholdVar>
 <IACStartIndex>6</IACStartIndex>
 <IACSet>true</IACSet>
 <IACWeight>100</IACWeight>
 <IACvarGroups>
 <IACvarGroup>
 <Name>Tenure</Name>
 <Weight>100</Weight>
 <CategoryCount>3</CategoryCount>
 </IACvarGroup>
 <IACvarGroup>
 <Name>AccomType</Name>
 <Weight>100</Weight>
 <CategoryCount>3</CategoryCount>
 </IACvarGroup>
 </IACvarGroups>
 <AreaIndex>12</AreaIndex>
 <P2ASet>true</P2ASet>
 <P2AWeight>100</P2AWeight>
 <MinBdyLenSet>false</MinBdyLenSet>
 <MinBdyLenPerc>10</MinBdyLenPerc>
 <IgnoreBishopsContig>true</IgnoreBishopsContig>
 <AllowDonuts>false</AllowDonuts>
 <IRATargetBasedTractCount>true</IRATargetBasedTractCount>
 <TestSpreadsheetReq>false</TestSpreadsheetReq>
 <NumberSwapIterations>5</NumberSwapIterations>
 <NumberRuns>20</NumberRuns>
 <UseLogDomainScores>false</UseLogDomainScores>
 <IgnoreTractsWithUnbreachedBB>false</IgnoreTractsWithUnbreachedBB>
 <RandomSeed>0</RandomSeed>
</ProgramOptions>
- <TargThreshVars>
 - <TargetThresholdVar>
 <Name>Population</Name>
 <FileIndex>5</FileIndex>
 <TargetSet>true</TargetSet>
 <Target>300</Target>
 <Tolerance>1000000</Tolerance>
 <Weight>100</Weight>
 <MinThreshSet>true</MinThreshSet>
 <MinThresh>100</MinThresh>
 <MaxThreshSet>true</MaxThreshSet>
 <MaxThresh>625</MaxThresh>
 </TargetThresholdVar>
</TargThreshVars>
A program run

XML Configuration file:
C:\AZTool\AZTool_M_Parameters.xml

Zone Output file:
C:\AZT_Demo\TractOutput.csv

Swap iteration 5
Run 18
Merging IRA tracts to reach the optimal count for target mean
Reduced from 7 to 3 tracts, ideal is 2
Swap iteration 1
Swap iteration 2
Swap iteration 3
Swap iteration 4
Swap iteration 5

Swap iteration 5
Run 19
Resolving sub-threshold tracts produced by IRA
Merging IRA tracts to reach the optimal count for target mean
Reduced from 6 to 3 tracts, ideal is 2
Swap iteration 1
Swap iteration 2
Swap iteration 3
Swap iteration 4
Swap iteration 5

Swap iteration 5
Run 20
Merging IRA tracts to reach the optimal count for target mean
Reduced from 7 to 3 tracts, ideal is 2
Swap iteration 1
Swap iteration 2
Swap iteration 3
Swap iteration 4
Swap iteration 5

Best iteration: 10 Tracts produced: 2
Tract composition saved to C:\AZT_Demo\TractOutput.csv
Duration: 1.96s
Output files

• A .txt format log file, reporting progress of the program run and identifying any problems, e.g. with the input data
• A .csv format results file, showing the output tract to which each building blocks has been assigned
• Zoning results can be re-imported to GIS and used to dissolve boundaries between building blocks
Output files

Swap iteration 5
Run 18
Merging IRA tracts to reach the optimal count for target mean
Reduced from 7 to 3 tracts, ideal is 2
 Swap iteration 1
 Swap iteration 2
 Swap iteration 3
 Swap iteration 4
 Swap iteration 5

Run 19
Resolving sub threshold tracts produced by IRA
Merging IRA tracts to reach the optimal count for target mean
Reduced from 6 to 3 tracts, ideal is 2
 Swap iteration 1
 Swap iteration 2
 Swap iteration 3
 Swap iteration 4
 Swap iteration 5

Run 20
Merging IRA tracts to reach the optimal count for target mean
Reduced from 7 to 3 tracts, ideal is 2
 Swap iteration 1
 Swap iteration 2
 Swap iteration 3
 Swap iteration 4
 Swap iteration 5

Best iteration: 10 Tracts produced: 2
Tract composition saved to C:\AZT_Demo\TractOutput.csv
Duration: 1.36s
<table>
<thead>
<tr>
<th>FID</th>
<th>Shape *</th>
<th>AREA</th>
<th>PERIMETER</th>
<th>BBHOM2_ID</th>
<th>BBPOP</th>
<th>OWNOCC</th>
<th>PRENT</th>
<th>HARENT</th>
<th>DET</th>
<th>SEMI</th>
<th>FLAT</th>
<th>BldBld</th>
<th>TractID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>2</td>
<td>100</td>
<td>80</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>3</td>
<td>100</td>
<td>78</td>
<td>12</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Polygon</td>
<td>40000</td>
<td>800</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>4</td>
<td>100</td>
<td>75</td>
<td>15</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>5</td>
<td>100</td>
<td>70</td>
<td>20</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Polygon</td>
<td>20000</td>
<td>600</td>
<td>7</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>9</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Polygon</td>
<td>30000</td>
<td>800</td>
<td>11</td>
<td>75</td>
<td>0</td>
<td>75</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Polygon</td>
<td>10000</td>
<td>400</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>
AZTool design constraints

- Constraint within higher level regions
- Population targets and thresholds
- Shape compactness
- Intra-area correlation measures
- New accessibility/network connectivity measures (April 2016)
Summary

• AZTool free Windows software application which aggregates a set of building block polygons into output tracts to best meet a set of zone design criteria

• Input arc and polygon attributes

• Run controlled by an XML parameter file

• Output log files and tract composition files

• Data usually sourced from and imported back into GIS
For more information please visit
www.ncrm.ac.uk