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The Basics of Bayesian Computation 
 

So let me go back to the basics in some sense. So Bayes theorem, which is outlined there in equation 

one gives me a way of computing the probability of observing event A given that I observed already 

event B.  This relationship, equation one is going to be present throughout all the exercises on all the 

points we'll cover today, although not necessarily in that way, but applying this theorem to random 

variables rather than to events because, as you know, as Andre mentioned in previous video Bayesian, 

treat parameters, regression coefficients, missing data, for instance, as random, random variables that 

have a certain distribution.  

 

So in the context of Bayesian statistical inference, we're going to start from a parameter from which we 

want to draw inferences. This parameter is a random variable, and thus has a certain distribution, which 

is denoted by fΘ. And in addition to that parameter, and intuitive distribution, we're going to have data 

and we're gonna have the node by f(data|Θ) sampling distribution, or roughly the likelihood of it, right. 

And in the context of Bayesian statistical inference, we're going to work with equation two, which is 

bayes theorem applied to random variables, and in particular, applied to a parameter of interest. So in 

equation two, in the numerator, we have fΘ, which is what Bayesians called the prior distribution of the 

parameters, which in turn says this can be understood as the probability distribution of the parameter 

before we observe any data, it is obviously a gratification but suppose we start with some prior beliefs 

about how we became summarise in the probability distribution fΘ we then have f of data given data, 

which as I said, is the probability distribution of the data which is something you work with. And you are 

familiar if you have worked with maximum likelihood estimation. And, and what we want to compute is 

what will be known as the posterior distribution of the posterior distribution of the parameter, f(data|Θ)  

given the data. So this is the version of the bayes, or the bayes theorem that we're going to work with 

when we to Bayesian inference.  

 

And from equation two, we have given that f(Θ)as its stated, there is independent of my random 

variable, which is my parameter, we can simplify this and to work with equation three, which essentially 

is what I would call a call in the slides, the Bayesian management, which is, the posterior distribution of 

the parameters of interest is proportional to the likelihood. The data times the prior distribution, we're 

going to use this relationship throughout the slides throughout the exercises included in this with the 

slide and throw your Bayesian life, right. The posterior distribution parameter is proportional to the 

likelihood and the prior. So in some sense, or very informally, when we do basic analysis, we start from 

a prior distribution, what we believe about the behaviour of a parameter. Before observing the data, we 

then observe the data and we update our prior beliefs of that parameter once we see the data and 

arrived at a posterior distribution of the parameter 

 

And the whole purpose of Bayesian inference is exactly deriving the posterior distribution of data 

starting from the prior distribution. And again, very informally, my beliefs about the parameter for 

instance, and the likelihood distribution of the data, right. So essentially, I would say that Bayesian 

inference, the whole big world of Bayesian inference, can be summarised as a process that consists of 
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four steps. First, we start from a likely explanation of the data and x's and y's, the dependent and 

independent variables in our models, we then need to specify a prior distribution for the parameters of 

that model I'm examining, which in this case, I'm summarising all these parameters or denoting all 

these parameters as data. Once I have the data, I have the prior, and we get step three is perhaps the 

key step which is deriving the posterior distribution, which is, in some sense, the most difficult step. And 

finally, once I have once I have derived the posterior distribution, I can summarise it computing 

posterior mean variances, reaching posterior what we know as posterior summaries. 

 

So let me walk you through a simple example of how these four steps are applied in practice. Suppose 

you have two candidates, A and B competing in an election. And you're gonna have to excuse me for 

using a political science example, but I am a political science. So we have a and b two candidates 

running for office. And suppose we have an opinion poll, based on a representative sample conducted 

before the election, a poll with 1067 potential voters 556 of which stated they will vote for A 511 

declaring they will vote for B. So based on this data, candidate A highers a Bayesian researcher to so 

that this researcher estimates the probability that A wins. 

 

Okay, so let's go over the four steps of Bayesian analysis in this instance. Step one, segment one is 

specifying a model for the data. This case, and suppose I am ignoring the representative abstention. I 

have two possible responses for each individual who participated in this opinion poll, we have two 

potential answers to the question, Who would you vote for? Vote for A vote for B. So we can think of 

this? Remember, we have an opinion poll with 1067  responders can think of this as 1067 independent 

Bernoulli trials, where the success is voting for A voting for candidate A. So we're going to denote by P, 

the probability of success and by Y to be the choice that individual I makes, and I can take two r values. 

One, if I will vote for A, or zero, if I will go for B.  

 

So we can think of the sampling distribution of the data as what we observe in equation 4for each 

individual in the sample has a probability P of success, and 1-p of failure. Again, success being voting 

for A, failure being voting for B because a Bayesian was hired by A. So, based on the responses to the 

public opinion poll, we arrived at these distributions later, which we see in equation five. Now, as I said, 

again, going back to the Bayesian mantra, the posterior distribution of the parameters, in this case, the 

parameter is going to be P, the probability of success is a simple example with the Bernoulli. 

 

So the parameter of a Bernoulli distribution is p, the probability of success. So going back to the 

Bayesian mantra, posterior is proportional to the likelihood times the prior. What we have is that is that 

good exterior distribution of p, even the data is going to be proportional to the sampling distribution 

times the prior, which I will denote by f (p). And this takes us, this takes us to the second step. 

Remember I said any base analysis has four steps, step one, specifying the distribution data. Step two, 

choosing the prior distribution for p.  

 

So we need to choose a prior for p and turns out that a typical prior distribution for parameters and 

present proportions rate estimated distribution. Specifically, the beta is what we know as a conduit prior 

distribution. A conduit prior is a prior such that the posterior follows the same distribution of the prior 

which is, as we will see, in this several examples, is very convenient. So what I'm saying here is that if I 

assume that beta, that the posterior still don’t know, how it looked like, but I know it will be Beta.  
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Just a side note, why beta? well, because beta, as i said this use a sub prior for proportions of rights, 

because it has a very nice property of essentially bounding parameter between zero and one, which is 

what I want from and you can play with the code there are included with this materials called Beta 

Distribution.R which allows you to come to different values obtain different beta distributions, depending 

on what I will call here, the hyper parameters to distribution. So alpha and beta essentially control how 

the shape of the prior distribution, okay, so here we have a graph of betas with different combinations 

of parameters. Alpha and Beta, which control the form of the prior are known as hyper parameters. And 

these hyper parameters will influence how much weight the prior distribution has in the posterior 

distribution, essentially, is hyper parameters. And this applies to the beta distribution, but to any 

distribution. In general, the hyper parameters of a prior distribution, in some sense, control how much 

influence the prior distribution is going to have relative to the data in the determination of the posterior 

distribution.  

 

Let me give you an example. Suppose I have no prior information at all about alpha and beta, or about 

the parameter P, and the parameter p being the probability of voting for A, suppose I have no idea, I 

have no information at all. But one way of incorporating this lack of information into the beta distribution 

is choosing alpha and beta equal to one. Why? Because as you can see here, if when I choose alpha 

and beta equal to one, I end up with a beta distribution, that the generated one or another way of 

putting this is that when I combine my data, the likelihood for the data will beta, prior  parameters one 

and one, it turns out that the prior essentially incorporates no information at all another way of saying is 

that the posterior is  going to be completely determined by the data. This type of or mainly determined 

by the. So these type of prior distributions that incorporate very little information to the data, essentially, 

this type of priors in which the posterior form of the posterior is essentially determined by later another 

prior or called vague, or weakly informative prior. And you can see here, the posterior distribution for P 

is essentially proportional to the likelihood and the prior is sometimes vanished.  

 

Now Let's go to the opposite extreme. Suppose that in addition to the poll I am currently analysing. 

There are several other polls that were conducted last month, two months ago, three months ago. And 

suppose to make things very simple, that I want to incorporate all that information. I think I want to use 

the result from previous polls and incorporate them in the prior and use that thing to inform, to inform 

our inferences and essentially, in the derivation in the posterior distribution of the parameters.  

 

Well, one way of doing that is using same the same beta distribution, which I said is a conjugate prior. 

So having a beta prior leads to a beta posterior, which is nice. I know the form of a beta distribution. But 

now instead of having parameters alpha and beta equal to one I'm using, I'm specifying the alphas and 

betas based on or incorporating all information from the previous polls. I will collect connected before 

dealing with a polling question. So I use those priors. And the posterior now is going to be quite 

different. It turns out, you're going to be heavily influenced by the prior. 

 

So we are already in step three of Bayesian inference procedure, what we have is that starting from a 

likelihood for later and choose having chosen the prior distribution for the parameters in this case, p, we 

arrived at the posterior distribution for the parameter and this posterior distribution is going to be a 

[inaudible] going to depend on the data but also on the priors. Specifically in this particular example, 
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whether I use vague priors, which added very little information to the parameter, or I use more 

informative priors, for instance, incorporating information from previous posts. 

 

Finally, I said the last step of elevation analysis, step one, defining the likelihood, step two, finding the 

prior to the parameters, step three, deriving the posterior and finally summarising the posterior 

distribution, because and this is, again, the key difference between Bayesian inference and classical 

inferences, statistics. I don't get an estimate for B, I don't get a point estimate, as one would typically 

expect in Bayesian setting, when again, the result of my Bayesian analysis, is this a posterior 

distribution, which is great. But the client who hired the Bayesian statistician doesn't really understand 

what it means to posterior distribution. what the client wants, wants to know is what was the probability 

that I will win the election. So I need to summarise this posterior distribution in some way. I can 

compute then the posterior mean, I can compute the posterior variance, I can compute credibility 

interval, right.  

 

So for instance, the posterior mean, if I knew, because I know that the posterior distribution of beta 

because the prior of beta and beta is a conjugate prior, meaning the posterior is going to have the 

same beta. I also have a distribution with different parameters, beta distribution, you can apply the 

formula for the expected value of the distribution to compute the expected value of P. I can compute 

also credibility intervals. I can compute things like oh, what's the probability that my client A wins? Well, 

that's a probability p exceeds point five. What's the probability that my client A loses as well as 

probability that B relative success is less or equal than point five can from the posterior distribution, I 

can compute all those quantities. 

 

And essentially, that's a first exercise in Bayesian computation. I just want to show you that, obviously, 

how close the posterior is the prior. Or the other way of saying how much importance the prior with a bit 

of data has on the posterior  depends on my choice of priors. So remember that,  in one case, I use 

informative priors, meaning I incorporated the information from several previous polls into analysis in 

this case, turns out that the posterior is very close to the prime. However, when I use vague or weakly 

informative priors, alpha and beta equal to one, my example, turns out that the posterior is closer to the 

data way to say this is if we use vague priors or weakly informative priors, the form of a posterior is 

going to be primarily influenced by the data. 


