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Outline: Advanced Bayesian Computation

® The purpose of these notes is to take a closer look at the
“nuts and bolts” of Bayesian inference

® We will build on “Introduction to Bayesian Data Analysis”" by
Andrei Zhirnov (Exeter, Q-Step)

e And focus on:

@ The main algorithms used in modern Bayesian computation
(Gibbs sampler and Metropolis-Hastings)

® Convergence criteria: how do we know when our Bayesian
estimation "is ready”?

©® Goodness-of-fit measures: how do we know whether our
Bayesian model does a good job describing our data?

O Strategies to speed up execution time (integrating R with
C++, Bayesian inference & High Performance Computing)



Recap: Bayes Theorem

® |let A and B be two events.
® Suppose we observe event B.

® What is the probability of observing A, given that we observed
B?



Recap: Bayes Theorem

Let A and B be two events.
Suppose we observe event B.

What is the probability of observing A, given that we observed
B?

Bayes Theorem:




e In (1):
® P(A|B) is the probability of A conditional on B
® P(B|A) is the conditional probability of B given A

® P(B) is the marginal probability of B



e In (1):
® P(A|B) is the probability of A conditional on B
® P(B|A) is the conditional probability of B given A

® P(B) is the marginal probability of B

® We can extend (apply) Bayes Theorem to random variables

® this is the cornerstone of all Bayesian inference

® because parameters are random variables within the Bayesian
paradigm

® which follow certain probability distributions



Bayes Theorem & Bayesian Inference

® |et

® 0 denote a parameter of interest (i.e., a regression coefficient,
a variance parameter)

® f(0) be the probability distribution of 4

e f(Datalf) denote the sampling distribution of the data
® j.e., the probability model followed by the data, given 6

® = likelihood function



® Applying Bayes Theorem:

f(Datal0)f(0)

f(0|Data) = F(Data) (2)

' _ f(Data|0)f(0)  f(Data|0)f(0)
<°r' flOData) = Do) () = f(Data) )

® In Bayesian “parlance”:

@ 1(0) is the prior distribution of 6

® j.e., before observing the data; what does the analyst
“believe” about 0's distribution?

@ f(Data|d) is the probability (sampling) distribution of the data

© f(0|Data) is the posterior distribution of ¢



e Since f(Data) does not depend on @ - i.e., it is a “constant” -
we can write (2) as:

f(0|Data) o f(Datal|0)f(0) (3)

® (3) Gives us the "Bayesian mantra":

Posterior distribution o Likelihoodx Prior distribution



e Since f(Data) does not depend on @ - i.e., it is a “constant” -
we can write (2) as:

f(0|Data) o f(Datal|0)f(0) (3)

® (3) Gives us the "Bayesian mantra":

Posterior distribution o Likelihoodx Prior distribution

® [nformally:

® We start from a prior distribution for 6 (before “observing”
the data)

® We “observe” the data

® We update 6's distribution (i.e., update the prior once we
observe the data) = posterior distribution



® (3) is the fundamental relationship of Bayesian inference.
® The “whole purpose” of Bayesian inference: deriving the
distribution of 0, given
® the data (explanatory variables, X; dependent variable(s), Y)
® the data model/likelihood, f(Datalf)

® the prior distribution assumed for 6, before “observing” the
data



Bayesian inference: the basic procedure

@ Specifying the data likelihood (the distribution of X and Y/,
given 0), f(Datal6)

@® Specifying the prior distribution for 0, f(0)
© Deriving the posterior distribution of 6, f(f|Data)

® Once we have f(6|Data), we can summarize this distribution

® e.g., compute the (posterior) mean, variance, median,
quantiles, etc.



An example of Bayesian inference

Suppose 2 candidates, Ay B, are competing in an election.
An opinion poll based on a representative sample was
conducted days before the election:

® 1,067 potential voters
® 556 of which stated their intention to vote for A

® 511 declared they would vote for B

Based on these data, A hires a Bayesian researcher in order to
assess his chances of winning the election

Let's go over the 4 steps of Bayesian analysis in this case



Step 1: Specifying the data model

® Each survey participant has two choices (ignoring abstention):

® yote for A

® yote for B

® \We can think of this as n = 1067 Bernoulli trials, where
success= "voting for A".

® |et p denote the probability of success, and Y; the choice of
individual i =1,2,...,1067, with:
e Y, =1 if i would vote for A

® Y, =0 if i would vote for B



® The sampling distribution of the data can be then written as:

1067
f(Datalp) = [ p"' (1 —p)* ™" (4)
i=1



® The sampling distribution of the data can be then written as:

1067
f(Datalp) = Hp (1—p)" (4)

® Based on the responses to the public opinion poll:

f(Data|p) = p>*° (1 — p)*** (5)

® The posterior distribution of p will then be given by:

f(p|Data) o p° (1 — p)*** £(p)



Step 2: choosing the prior distribution for p

A natural prior distribution for parameters representing rates
or proportion is the Beta distribution

In fact, the Beta distribution is a conjugate prior for
parameters representing rates or proportions

We say that f(0) is a conjugate prior distribution when
® f(p|Data) follows the same distribution as f(6)

In our application, if f(p) ~ Beta

f(p|Data) = p°°° (1 — p)°! x f(p) ~ Beta



The Beta distribution

® let p be a random variable, 0 < p <1

e |f p follows a Beta distribution, its density function is:

f(p) = ﬁéZ)Jrr(g; p* 1 —p)’!

with parameters 'y 3, and () a gamma function:

M(n) = / u"texp(—u)du,n > 0
0

with
® ['(n) = (n—1)! for n a positive integer



® The characteristics and central moments of a Beta random
variable depend on a y 3



® The characteristics and central moments of a Beta random
variable depend on a y 3

° Elp) =@ty

* Var(p) = Gaytarsry

e R:"Beta Distribution.R"



Density
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® The plot of the Beta density shows that the Bayesian analyst
must choose

® not only the prior distribution for the parameters (e.g., p)

® but also the parameters of this prior distribution (in this case,

a & f)

® The parameters of a prior distribution are known as the
hyperparameters

® These hyperparameters will influence the “weight” that the
prior distribution has on the posterior distribution of p



® For instance, suppose the analyst has no prior information
about the possible result of the election.

® From (6), it follows that if the analyst chooses the following
values for the hyperparameters:

°* a=1
° =1

the prior distribution for p will be:

()= Fr P P = e )

= f(p) o p°(1 - p)° =1



® And therefore, the posterior distribution for p will be:

f(p|Data) oc p°°°(1 — p)° x 1
= f(p|Data) o p>*°(1 — p)°**

® In other words, the prior distribution adds no information to
the posterior

® The posterior distribution will be completely determined by
the data
® This type of prior distribution is known as vague or weakly
informative prior

® when vague priors are used, Bayesian inference is ~ maximum
likelihood inference



® At the other extreme, suppose the analyst also has
information from previous opinion polls:

Poll n Votes for A Votes for B
Last month 685 346 339
2 months ago 637 312 325
3 months ago 628 284 344

Total 1,950 942 1,008




® The analyst could choose to incorporate this information in
the prior f(p).

® For instance:

r(1950) 042-1(1 _

"(P) = Foa2)r(1008) e

p

® And thus the posterior distribution would become
f(p|Data) o pP56(1 — p)5L x p?4L(1 — p)1007

= f(p\Data) o p1497(1 _ P)1518



Step 3: Deriving the posterior distribution for p

® |n sum, we arrived at two possible posterior distributions for
p

e With a vague prior Beta distribution:

f(p|Data) = p>*°(1 — p)***

e With an informative Beta prior distribution:

f(p\Data) _ p1497(1 _ p)1518

® |n both cases, we have a Beta posterior

® because we chose a conjugate prior distribution



® The choice of hyperparameters o and [ will determine
whether f(p|Data) will be affected

® primarily by the data under consideration (if the prior is vague
or weakly informative)

® by the data and prior information (if the prior distribution is
informative)



Step 4: Summarizing f(p|Data)

¢ Assuming that f(p) o Beta(984,1008)
® & given the data model f(Datalp)

® we have: f(p|Data) x Beta(1498,1519)

® So ... what is the "estimate” of p?

® Bayesian inference does not lead to “estimates” ... it leads to
(posterior) probability distributions for parameters like p

® R: “p - Posterior Distribution.R"
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® So, how do we summarize f(p|Data)?



So, how do we summarize f(p|Data)?

We can compute the expected value of p:

o 1498

= = 0.497
o+ [ 14998 + 1519

E(p) =

That is, the expected proportion of votes for A is 49.7%
We can also compute a 95% credibility interval for p

® R: "Posterior summaries for p.R”

(8)



® We can also compute the probability that A wins/loses the
election

P(A wins) = P(p > 0.5) = 0.351

P(A loses) = P(p < 0.5) = 0.649

® R: “Posterior summaries for p.R"



50

40

30

20

10

Probabiliy that A wins/loses

f(p|Data)

P(p<0.5)= 0.649

P(p>0.5)= 0.351

0.40

0.45

0.50

0.55

0.60




Side note: Comparison between f(p), f(Datalp), y
f(p|Data)

o
L e f(Data|p)
f(p)
— f(p|Data)
==
-
o
o
o
N
o _|
o
T T T T
0.45 0.50 0.55 0.60



® Note that f(p|Data) is a “compromise” between

* f(p)
® and f(Data|p)

® When we use an informative f(p), f(p|Data) is “closer” to
f(p) than to f(Data|p)

® because f(p) carries more weight than f(Data|p)
® 1,950 respondents in previous polls

® but only 1,067 in the poll under study

® The situation would have been different with a “vague” f(p)



Comparison: f(p), f(Data|p), y f(p|Data), vague f(p)
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® |n this case:
® E(p)=0.55
® 05% creditibility interval: [0.49,0.55]

® Prob(A wins) :=0.915

® = Critical role of prior distributions in Bayesian inference



A first approximation to simulation-based inference

® |n the previous exercise, we derived
f(p|Data) ~ Beta(1498,1519)

® Based on this, we could compute E(p|Data) applying the
formula for the expectation of a Beta random variable

E(p|Data) = ﬁ 9)



A first approximation to simulation-based inference

® |n the previous exercise, we derived
f(p|Data) ~ Beta(1498,1519)

® Based on this, we could compute E(p|Data) applying the
formula for the expectation of a Beta random variable

E(p|Data) = ﬁ 9)

® (9) follows from

MNa+5)

Wpa_l(l - P)ﬁ_ldp

1
E(p|Data) :/ p X
0



e Similarly, we could compute P(p > 0.5|Data) from

0.5
1—-P(p<0.5|Data) =1 —/ Mta_l

_ #\8-1
o Trp)’ GO



e Similarly, we could compute P(p > 0.5|Data) from

0.5 r
1—-P(p<0.5|Data) =1 —/ Mta_l

_ -1
o Trp)’ GO

® Now, suppose we could not “solve” these integrals

® How could we compute E(p|Data), P(p > 0.5|Data)?

® or other quantities of interest like the median, the credible
intervals, etc.?



e Similarly, we could compute P(p > 0.5|Data) from

0.5 r
1—-P(p<0.5|Data) =1 —/ Mta_l

_ -1
o Trp)’ GO

® Now, suppose we could not “solve” these integrals

® How could we compute E(p|Data), P(p > 0.5|Data)?

® or other quantities of interest like the median, the credible
intervals, etc.?

® “Bayesian answer”: Simulations!



We can generate S values from a Beta(1498,1519)
distribution

Let's write these S values as pt, p?,...,p°

We can compute E(p|Data) as

S s
/p f(p|Data) =~ nglp

Similarly, we can compute Var(p) as

[ (b~ ElpiData)Pr(pipata) ~ 2517

with p obtained from (10)

Zf:l(PS - p)?

(10)

(11)



® |ikewise, we can compute any other quantity of interest using
simulations

® P(p > 0.5|Data)

® credibility intervals, etc.

® R: “Simulations from a Beta posterior.R"



Monte Carlo Integration

® More generally, suppose we want to compute

E<h(9)> = / h(0)f(6|Data)d0 (12)

where:

® () is the parameter of interest

® h(0) is a function of

® Solving (12) analytically can be quite difficult



® But suppose we can generate S independent values from
f(0|Data):
01,62,...,0° ~ f(#|Data) (13)

e We can then compute E(h(9)> as:

E<h(9)Data) e (14)

® This is the principle behind Monte Carlo integration
(simulation)

® series of techniques to compute probabilities and moments
based on values simulated from a probability distribution

® instead of using “calculus”



Why does Monte Carlo integration (simulation) work?

e Under very general conditions, a (certain version) of the law
of large numbers guarantees that

S s
Zszlsh(e ) — E(h(e)) (15)

as S — oo

® |mportant: it is not n that “goes to" oo

® but rather S, the number of values simulated (generated) from
f(0|Data)

® With modern computers, it is very easy and cheap to generate
large number of values S from f(6|Data)



Monte Carlo integration is thus a very general and powerful
approach

Any integral or sum can be expressed as the expectation of a
random variable with resepect to a certain probability

distribution

In other words, we can compute expectations, variances,
quantiles, etc. using Monte Carlo integration

As long as we can directly generate S independent
values from f(6|Data)

This is not always possible, though.



Markov chain Monte Carlo (MCMC) simulation

® In the previous example (two-candidate election), it was very
easy to generate values from f(6|Data)

® or, more specifically, f(p|Data)

using a simple R command (“rbeta”)

® |n other cases, this is more difficult

® e.g., models with multiple parameters

® models for which f(f|Data) does not have a closed form

® So we need specific routines/algorithms to sample from
f(p|Data)



® For example, let's assume that

f(0|Data) 2013

0<6f<5 (16)

® There is no “command” or “canned routine” allowing us to
generate values from (22).

® “rbeta” in R is no longer useful for us

® or any other random generation function available in R (or
MATLAB, or Stata, or Python) for that matter

® |n such circumstances, me need more ‘“specialized” algorithms
to generate samples from f(6|Data)



® There are multiple Monte Carlo simulation methods (routines,
algorithms) to deal with this sort of cases

® e.g. importance sampling

® rejection sampling

® Bayesian statistics relies on Markov chain Monte Carlo
simulations (MCMC)



Basic idea behind MCMC simulations

® The denomination “Markov chain Monte Carlo (MCMC) refers
to the two key “components” of the simulation techniques
that conform the basis of modern Bayesian computation

@ We want to “learn” about the posterior distribution of a
parameter 6, f(6|Data), using Monte Carlo simulations

® rather than analytically solving for the moments (expectation,
variance, etc.) of f(f|Data)

® we are going to simulate values from f(f|Data)

@® Those values are going to be simulated form a Markov chain

® because (15) holds in this case



Markov chain

® A sequence X% X1, X2, ... of random variables

® uni o multi-variate

is a Markov chain if:

P(XTHXE XL X0 = P(XTTHXY) Vse N (17)

® That is, only the value(s) of X en t is (are) relevant for the
distribution of X in t 41

® Under general conditions, the Markov chain converges - in
distribution - to its stationary distribution as t — co

® regardless of the chain's starting point



® The conditions under which a Markov chain converges to its
stationary distribution are rather “technical”

@ Irreductibility: Any given state of X can be reached from any
other state in a finite number of moves

@® Aperiodicity: the chain does not cyclically return to a
previous state

® Technical references and conditions under which they hold:
® Geyer (1992), Besag y Green (1993), y referencias

® More important for our purposes: the conditions under which
a Markov chain converges to its stationary distribution are
quite general

® for practical purposes, they hold for the vast majority of social
science models



MCMC simulations to approximate f(f|Data)

® |et's suppose that:
® We replace X in the previous definition with a parameter 6

® We replace the index t with s (simulations)

® The basic idea behind MCMC simulations is to “construct” a
Markov chain such that:

® starting from an initial, arbitrary value of 6, §°

® we can generate a sequence of samples 6°, each of which
depends only on #°7 %, s =1,...,S

® and that sequence convergences to the stationary distribution
f(6|Data)

® The same idea generalizes to vectors of parameters ©



Two main MCMC simulation techniques

® Most econometric/statistical models use in the social science
involve several parameters, relatively “complex” posterior
distributions, etc

® impossible or tedious to solve analytically

® Modern Bayesian inferences resorts to two basic techniques
(algorithms) to “build” Markov chains that converge to
f(©|Data)

@ Gibbs sampling:

® Metropolis-Hastings algorithm



@ Gibbs sampling:

® the most basic algorithm in Bayesian inference

® applied when it is impossible to simulate from the (joint)
posterior distribution of the parameters

® but we can “split” this joint posterior distribution into a series
of simpler conditional distributions

® from which it is easier to generate samples

® Metrépolis-Hastings algorithm

® generalization of Gibbs sampling

® useful when it is impossible to generate values even from these
conditional posterior distributions



Gibbs sampling

® Suppose we have a vector of parameters ©, with K elements
©=(61,...,0k)

® Suppose it is impossible to draw samples from

f(©|Data) = f(01,62,...,0k|Data)

® However, suppose | can “split” the joint posterior
distribution into a series of conditional distributions:
f(©|Data) =f(61]62,...,0k, Data)
X f(92]91, 03, ...,0k, Data) s X
f(ngl, e Okq, Data)



e Or, equivalently,
f(©|Data) = f(01]0_1, Data)x
f(62|0—2,Data) - - - x
f(9K|0—K, Data)

where 0_4, k =1,..., K, denotes all the elements of ©
except for 6

o |f:
® We cannot draw samples from f(©|Data)
® But can draw samples from f(0x|0_x,Data), k=1,..., K

® = | can use Gibb sampling to approximate f(©|Data)



Gibbs sampling “steps”
@ Start from initial arbitrary values of the parameters

© 00 09,69, ...,6%

® Draw samples:
61 ~ F(01169,,60%, Data)
03 ~ (62]61,69,...,6%, Data)

Ok ~ F(0k|6},63,...,0k 1, Data)
© Repeat step 2 S times, obtaining values

05 ~ f(Ok|65,...05_1,...,05 * Data)

at each iteration s = 2,..., S of the algorithm



Gibbs sampling in practice - Example

Let Y1, Y2,..., Y, be a random sample from N(u,o?)

LINTR 2 unknown

Goal: “estimate” 1y o2 using Bayesian inference (MCMC
simulations)

® i.e., derive the posterior distributions of ; and o2

We resort to the usual “Bayesian mantra”:

® Posterior distribution  Likelihood x Prior distribution

In this example:

F(p, 0?IY) o< £(Y|n, 0%) x f(p, 0%) (18)



® |et's follow the 4 steps of Bayesian inference seen before:

@ Defining the likelihood for (Y1, Ya, ..., Y,), given uy o

® Specifying the prior distributions for pardmeters 1 and o

© Deriving - or approximating - the posterior distributions of p
and 6

@ Summarizing these posterior distributions



Step 1: specifying f(Y|u, 0?)

f(Y|p, 0?) is given by:

¥l H mx”<(y;)2>

§:£4KYi—/DQ>

(19)
(2ma2)n/2 P <_ 202

® Hence, the posterior distribution for f(u, a?|Y) will be given
by:

1
2
(1,02 1Y) x 5 exp L

(-Z20 ) ) o



Step 2: Prior distributions for f(, o?)

® Two options:

@ Defining a joint prior distribution for 1 and o2, f(u,0?)

@® Defining a priori independent prior distributions for i and o2

® j.e., assuming that the prior distribution about w is
independent from the prior distribution about o2

f(p,0%) = f(n) x f(o%) (21)

® The second approach is generally easier



® How do we choose f(u) y f(0?)?

e Conjugate priors are always useful when applying Gibbs
sampling

® because this will help obtaining (conditional) posterior
distributions for i and o from which it is easy to sample

® property of conjugate prior distributions



How do we choose f(u) y f(02)?

Conjugate priors are always useful when applying Gibbs
sampling

® because this will help obtaining (conditional) posterior
distributions for i and o from which it is easy to sample

® property of conjugate prior distributions
The conjugate prior for p is the Normal distribution:
2
F(p) o< N(m, oy;) (22)

where m and aﬁ are hyperparameters of this prior
distribution

Easy to simulate from, using “rnorm”



® If the analyst has prior information about p
® e.g., from previous studies
she can use this information to specify m and aﬁ

® = the prior distribution for i would then be both conjugate
and informative



® If the analyst has prior information about p
® e.g., from previous studies
she can use this information to specify m and aﬁ
® = the prior distribution for i would then be both conjugate

and informative

® |f there is no prior information about p, the analyst would go
for a conjugate and vague prior distribution
® For instance:
* =0
* o5 “large” (e.g., 100)



® The conjugate prior distribution for the variance of a normal
variable is the Inverse Gamma

® The pdf of an Inverse Gamma distribution is
f(0%) o< (0%) " exp(—B/0?) (23)

with hyperparameters:

® a > 0, affecting the shape of f(o?)
® 3> 0, affecting the scale of f(0?)

® Note that R does not have a “canned command” to generate
values from an Inverse Gamma distribution



® We would need to use specialized packages (like “bayesAB")

® Or - even easier - resort to the following property:

® If 02 ~ Gamma Inversa(a, 3)

* = 1/0? ~ Gamma(a, 3)

® We can use the “rgamma” command in R to generate 1/02

® and then obtain the inverse



Step 3: Deriving posterior distributions for 1, and o2

® From (20), (22) and (23), we have that:

>iayi— u)z)

1
2
f(Y’M70— ) X (0_2)”/2 eXp(_ 20_2




® Hence, the posterior distribution of the parameters is:

n )2
F(1:0°Y) oz oxp (Al 1
1 )2
(02)172 P(‘W) * (24)
1
ST &P(=B/o%)

® Problem: (24) has no “"known” form

® it is difficult to obtain means, variances, etc. analytically

® but also impossible to simulate from (24)!



® \What can we do?



® What can we do? = Gibbs sampling!



What can we do? = Gibbs sampling!
We cannot draw samples from f(u, o2|Y)
But let's try to express f(u,o?|Y) as:
(1, ?IY) = F(lo®, Y) x Fo?lps, Y)
where:

f(u|o2,Y) is the conditional posterior distribution of

® taking o2 (and obviously Y) as given

f(o?|p,Y) is the conditional posterior distribution of ¢

® taking u (and Y) as given

(25)



Deriving f(1|o?,Y)

® From f(u,d?|Y):

>iayi— u)2> y

1
2 J—
f(u, oY) o<(02)n/2 exp( 22
1

1
meXP(_ﬁ/U2)

® We take all parameters other than p as constant, and focus
only on the terms that depend on p



Deriving f(1|o?,Y)

¢ From f(lu’a 02|Y):

>y — M)2> "

1
2 J—
1

1
T P(=B/0%)

® We take all parameters other than p as constant, and focus
only on the terms that depend on p

F(ulo?, ) exp(_w> . exp<_(u—m)2>

20'2 20_5



e With a little bit of algebra:

f(ulo?,Y) o eXp<_ S (vi — p)? B (n— m)2>

20’2 20_[5



e With a little bit of algebra:

2 _27:1()4 —p)? _ (1 —m)?
f(ulo,Y) eXp< 52 202

S YR 2w i+ Y 4

2
f(ulo, Y) o eXp< - o2

u? —2um + m?
202




e With a little bit of algebra:

2 _Zle(yi - H)2 B (/j, — m)2
) eXp( 202 202

TyP=2 oy S 2
f(#|02,y)0<exp<—z’1y' H%gl.zlyl Dol

/J’2 - 2/Lm + m2
203

1 JiZ?Zly"z_2Ulzl“n)7+naiﬂz+azu—202um+02m
eXP(_E[ 0202 D
m




® And grouping all the terms that depend on pu:

2

f(:u"0—27Y) (&8 exp(— 0_20_2

1 [,u2(naﬁ + 02) — 2,u(aﬁn)7 +o%m) + c])
m

where ¢ =073 Y 7 y? + 02 m is a constant (with respect to 1)

= f(ulo?,Y) xexp <—1[

2

1 ¢
e —— ——
P 2a2aﬁ

2 (nod + 02) — 2u(oany + om)
o202



ﬂuw%v)aem(—i[

W2(n0? + 02) — (o207 + o?m)
0202



(4]0, Y) exp(—i [

W2(n0? + 02) — (o207 + o?m)
0202

® Dividing the numerator and denominator by naﬁ + 0%

(ai ny+a?m)

2
1TH —2u (no2+02)
(oY) x oxp( | =BT qas)
na2+u02
n

® (26) now resembles the kernel of a known distribution . ..



e Completing the square:

® And since the second term is again constant (with respect to
Ok

2 = 2
( w

252
O—UP'

f(ulo?,Y) o exp[— (27)

2 2
nau—&-a



e (27) shows that f(u|o?,Y) is Normal, with mean:

2, 2
ouny +o°m

28
nal% + o2 (28)
® and variance:
2 2
oo
o
—_—t 29
naﬁ + 02 (29)

® The important part is: we know how to draw samples from
(27)

® e.g., using the “rnorm” command in R



* Note that the expectation of f(i|c2,Y) is a combination of:

® the prior mean m

® and the sample mean, y

® The relative weight of m and y depends on:

@ the sample size, n: the larger the value of n, the “heavier” the
weight of the data vis-4-vis m

@ the prior variance, o2: the larger the value of oi, the heavier
the weight of the data vis-a-vis the prior information

® when there is more uncertainty about the prior information, we
place more emphasis on the data

© the variance o2: the larger the value of o2, the heavier the
weight of m

® when the data is less informative, we place more emphasis on m



Derivation of f(o?|u,Y)

® To derive f(o?|p,Y), we start again from f(u,o?|Y) and
focus only on those terms that depend on o

® treating every other term as “constant”



Derivation of f(o?|u,Y)

® To derive f(o?|p,Y), we start again from f(u,o?|Y) and
focus only on those terms that depend on o

® treating every other term as “constant”

® That is, starting from:

1 Sy — p)?
2 _ Lai=1
f(u, oY) o<(02)n/2 exp( 22 X
1 ( (n— m)2>
exp| ———5—"— | x
(02)1/2 20%

1
meXP(_ﬁ/UZ)



F(0?|1,Y) o

exp <_E:1(y—ﬂ)2> «

202

1
(0-2)n/2

) (30)
i P(—5/%)

® And, grouping terms:

1 Yialyi—w)? | B



F(0?|1,Y) o

exp <_E:1(y—ﬂ)2> «

202

1
(0-2)n/2

) (30)
i P(—5/%)

® And, grouping terms:

1 Yialyi—w)? | B

Z; 1(.yl
1 ==L + B
2
f(o|m,Y) o< (02)(n/2tat]) exp( 5 ) (31)



® (31) is the kernel of an Inverse Gamma distribution, with
parameters:

* o =n/2+a
’ n i— 2
* 3 :Z,:l(%/ ©) +8

® And, again, we know how to draw samples from this
distribution!



Recap - Gibbs sampling in this example

In sum, we had arrived to a joint posterior distribution we
did not know how to sample from: f(u,?|Y)

But we could “split” this joint posterior in two conditional

posterior distributions, from which it is easy to draw
samples

® A normal distribution, f(u|o?,Y)

® And an inverse gaussian distribution, f(o2|u,Y)

Hence, rather than drawing samples of u and o from
f (11, 02|Y), we obtain them from (1) and (2)



Steps in our Gibbs sampling algorithm

@ Choose the hyperparameters for the prior distributions for p
2
yo

. 2
m and o

® oand p

@® Propose initial values for ug y 08
® Draw o7 from an Inverse Gamma distribution with parameters

o =n/2+a

21 (i — o)’

f= 2

+ 8



® Draw u; from a Normal distribution with:

205 2
o,ny +oim

Mean =
2 2
noy, + 07
_ o303
Variance = —
noy, + o7

® Repeat steps 3 and 4 for s =2,...,5, taking us_1 and ‘7571
as starting values for iteration s

® S must be large enough so that convergence to the stationary
distribution occurs

® j.e., large enough for the sample draws to their “stationary
state”



Gibbls sampling in R

® R: “Gibbs sampling - Normal distribution.R"



Gibbls sampling in R

® R: “Gibbs sampling - Normal distribution.R"
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Exercise - Gibbs sampling

® Assume we have the same data

® ie, asample Y, Ya, ..., Y, from a N(u,0o?)

® But suppose we adopt the following prior distributions for
the parameters:

f(p) = constant
f(o?) x 1/02

® The exercise consists of 2 tasks



@ Verify that the resulting conditional posterior distributions
are:

_ o’
(o) x (7.7

f(02|p, Y) oc Gamma Inversa(a, f3)

with:
a=n/2
n L 2
ﬁ — Zi:l(é’ lu’)

® Verify that you understand the new sampler, contained in
“Gibbs sampling - Normal distribution, alternative priors.R"



Metropolis-Hastings (MH) algorithm

® For some models, drawing samples from the conditional
posterior distributions may be unfeasible

® Hence, Gibbs sampling is not applicable

® However, the M-H algorithm can be used



Metropolis-Hastings (MH) algorithm

For some models, drawing samples from the conditional
posterior distributions may be unfeasible

Hence, Gibbs sampling is not applicable

However, the M-H algorithm can be used

Specifically, suppose it is not possible to draw samples of ©
from its joint posterior density

® or from any of #'s conditional posterior densities

However, assume we can draw samples from another
distribution, g()

Then, we can apply the M-H algorithm



MH algorithm in a nutshell

@ Start with an initial value of 6, say 60

® Draw a “candidate” value for 8, 8¢, from a proposal density
g(), conditional on #5°1, s =1,....S

® ie, 0~ g(0|6°"t) (Markov chain)

©® Compute:

£(6|Data) x g(65~1]6°)
(65—1|Data) x g(0°]65—1)

Ratio = 7 (32)

® Generate u ~ Uniform(0, 1)



© Compare u against the Ratio in (32):
® If Ratio > u, 6° = 0°

e |f Ratio < u, 65 =651

® Go back to step 2



Some comments about the MH algorithm

® In step 2, the value of # drawn from g() is initially a
“candidate”, because it is not immediately accepted

® this depends on the comparison between u and the Ratio in

(32)



Some comments about the MH algorithm

® In step 2, the value of # drawn from g() is initially a
“candidate”, because it is not immediately accepted

® this depends on the comparison between u and the Ratio in

(32)
® Note that this Ratio has two “components’”:

@ the relationship between the posterior distributions evaluated
at §¢y 51

f(6°|Data)
f(05—1|Data)

® The larger this ratio, the higher the likelihood that ¢ is a
“good candidate”



® The second component is

g(6°16°)
g(0<|os=1)

the relationship between the proposal densities evaluated at the
previous value of the parameter 6 and at the "candidate” value

® This can be understood as an “adjustment” to take into
consideration how likely is 8¢ with respect to 6°

® That is, we are adjusting for the “quality” of the proposal
density

® some g()s may disproportinally “choose”’ very likely/unlikely
values of 6¢



Some commonly used proposal densities g()

® Normal random-walk:

6 ~ N(6°571,052)

with o2 “large”

e Uniform random-walk:

0 o< 0571 + U(a, b)

® The key advantage of these proposals is that they are
symmetric:

* g(6°]651) = g(6°1]6°)



A symmetric proposal

g(o<le= ) =

g(6°1]6°)

\

g(6°16°)

£(06")

\/

//

AN

s gc




An asymmetric proposal

g(6°16° ) > g(8* 16)

95—1 HC




e With symmetric proposal, the Ratio in (32) becomes simpler:

Ratio — ff(@ |Data)

(9s—1|Data) (33)

® In general, we will work with the logarithm of this ratio:

log(Ratio) = log(f(0°|Data)) — log(f(#°*|Data)  (34)
and compare it against log(u), u ~ Uniform(0, 1)

® For the same reason that we work with the log-likelihood
function in ML estimation

® stability, avoiding overflows



Example: “Estimating” the correlation coefficient of a
bivariate Normal distribution using the MH algorithm

® Assume that (x, y) ~ Bivariate Normal:

with density function:

2_2 2
x* — 2pxy y) (35)

1
foy) = 2my/1 — p2)exp< 2(1-p?)

® Suppose we have a sample (X;, Y;), i=1,...,n

® Goal: draw inferences about p



® As always:

Posterior distribution o Likelihood x Prior

F(plx,y) o< £(x,ylp) x f(p)
® |et's assume we have no prior information abut p
® except that p € (—1,1)
® Vague prior distribution for p: Uniform(—1,1)

fp) = 1/2



The posterior distribution for p is then:

1 S X =20 Xiyi + 2?21 %
o) = e 21— )

No closed form

® cannot draw samples from f(p|x,y)

Can we use Gibbs sampling to draw from the conditional
posterior?

® No (why?)

=> we are going to resort to the MH algorithm

)



To apply MH algorithm, we need to choose a suitable
proposal density g()

For instance, we can use a symmetric proposal

® because - as we saw - this simplifies computations

A possible proposal:
p¢ = p*~1 + Uniform(a, b)

with —1 < a< 0, 0 < b < 1 chosen so as to allow the
algorithm to “explore” the parameter space

For instance:

p¢ = p°~ 4 Uniform(—0.1,0.1)

(36)



Steps of our MH algorithm

@ Start from an initial value of p
®eg,p’=0
® Fors=1,...,S, draw a “candidate” p:

p¢ = p°~1 + Uniform(—0.1,0.1)

© Evaluate f(p|x,y) at:

° pc: log(f(p°|x,y))
* p° log(f(p*tx,y))

and compute the log-ratio: log(f(p<|x,y) — log(f(p*1|x,y)



@ Draw u ~ Uniform(0, 1)
© Compare the log-ratio (step 3) against log(u)

o If (log(f(p°|x,y) — log(f(p°~*Ix,y)) > log(u) = p* = p°

® FElse if

(log(f(p°|x,y) — log(f(p°~tx,y)) < log(u) = p* = p**



@ Draw u ~ Uniform(0, 1)
© Compare the log-ratio (step 3) against log(u)

o If (log(f(p°|x,y) — log(f(p°~*Ix,y)) > log(u) = p* = p°

® FElse if

(log(f(p°|x,y) — log(f(p°~tx,y)) < log(u) = p* = p**

e R: “MH algorithm for rho.R"



MH algorithm - sampled values for p

p samples
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Combining Gibbs sampler & Metropolis steps

® For most social science models, we are typically going to use a
combination of Gibbs sampling and Metropolis steps models

® Example: hierarchical logit model:

® i individual-level observations, i =1,... N

® inj=1,...J countries

_ep(X B+ )
1+ exp(X; ;B + 1)

P(Yij=1)

with n; ~ N(0, 02)



® Parameters:

(1 ]y}
@nj,j:].,...,./
O o°

® Assuming:
@ N(0,100/) priors for 3
® N(0,100) priors for nj, j=1,...,J

©® And conjugate Inverse Gamma (0.1, 0.1) priors for o

we can show that:

® 3 and 7); have no closed-form conditional posterior
distributions

® but 02 has an Inverse Gamma conditional posterior
distribution



® Specifically, the conditional posterior distributions for the
parameters are:

eXp(XI,_]B +771)
1+ exp(X,’JB +nj)

f(Bn, 0?) x N(0,100/) (38)

exp(X; ;8 + nj)
1+ exp(X; ;8 + )

f(nj‘ﬁv N—j, 02) X N(07 100) (39)

EJ 1772
, 1 0.1+ =5+
f(o%18,m) o (02) 072011 &P e ) @



The distributions in (38) and (39) have no closed form

But (40) is the kernel of an Inverse Gamma distribution with
parameters 0.1 + J/2 and 0.1 + S 1nf

Hence, we will need to resort to

@ M-H steps to draw samples for 3 and n;, j=1,...,J

@® Gibbs sampling to draw samples for ¢

Application: “Hierarchical Logit.R"



Exercise

If we use a probit rather than a logit model, all the
conditional posterior distributions have known closed forms

So, when fitting a hierarchical probit model, we only need
Gibbs sampling

® no M-H steps are needed

Convergence is typically faster.

Application: “Hierarchical Probit.R”



Assessing Convergence

® |n our exercises - Gibbs sampling, MH algorithm - we run the
sampler for an “arbitrarily long” number of iterations

® And visually explored the traceplots

® i.e., checked that the sampled values seemed to reach a
“stable state”

® Visual inspection of trace plots is a first - informal - approach
to assesing convergence of the MCMC algorithm



Traceplots for different parameter draws
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Informal approach to assessing convergence - checking
traceplots

® For a well-mixing, convergent parameter, simulated values
look almost vertical and dense

e stable values after burn-in (no trends)

|deal parameter trace plot

Trace plot
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o
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7 T T T T T
0 1000 2000 3000 4000 5000
Iteration number



® Not like this:

MCMC did not converge

Trace plot
%
§o
i
uw
g
g 0 1000 2000 3000 4000 5000
Neration number



Formal approaches to assessing convergence

® Formal approaches to assessing convergence depend on
whether

@ We run a single MCMC - Gibbs sampler, MH algorithm - chain
for a very large number of iterations S

@® We run multiple - e.g., 3 - shorter MCMC chains



® |n our previous examples we run a single chain

® we started the chain from a single initial value for each
parameter 6 € ©

® drew S samples from ©, generating a sequence @°,01, ..., ©°

® But 2 is arguably more common in practice

® e.g., running 3 chains, each one starting from different initial
values

® running each chain for S iterations

® pooling together the draws from each chain - upon
convergence - to compute means, variances, etc.



® |n all cases, the usual practice is to:

® use the first few iterations of the single/multiple chains as
“burn-in"

® assess convergence using the sample draws from the chains
after the “burn-in" period



® |n all cases, the usual practice is to:

® use the first few iterations of the single/multiple chains as
“burn-in"

® assess convergence using the sample draws from the chains
after the “burn-in" period

N — burn-in
period
g Al
o

I I I I I I
0 200 400 600 800 1000



More formal convergence criteria - single chain

o Geweke’s criterion, Heidel’s criterion

® compare the sample draws from different parts of the chain,
after the burn-in period

® check that the values do not differ dramatically



More formal convergence criteria - single chain

o Geweke’s criterion, Heidel’s criterion

® compare the sample draws from different parts of the chain,
after the burn-in period

® check that the values do not differ dramatically

® For instance, using Geweke’s criterion we would compare:
® the initial 10% of the samples (after burn-in)
® against the last 50% of the sampled values
® using a t-type of test

® “t-tests” outside the [-1.96, 1.96] range indicate lack of
convergence



® Both the Geweke and Heidel criteria are readily available in
R

® ‘“coda” package

® commands: geweke.diag, heidel.diag

® Application: “Heidel criterion for Gibbs sampling, Normal
distribution.R"

® Exercises:

@ Check convergence using Geweke's criterion

@® Use both the Heidel and Geweke criteria to check converge of
the MH algorithm we used for p



More formal convergence criteria - multiple chains

* Gelman & Rubin’s R: compares the variability of sampled
values

® within each chain

® and between chains
® More specifically:

@ Computes the average samples of 8 in each chain c,
c=12,...,C (eg, C=3)

S ps
9_ — Zs:l 96
c S



® Computes the average sampled values across chains:
c
0_ — zczl ‘9‘3
C
® And from (1) and (2):

c o1 (62—6c)?
L, Bty
C

g Ll =0y
S/(C-1)



A

® The convergence measure, R, is given by:

(S—1)/S)W + B/S
w

R =

® Convergence: R<12

® “coda” package
® command: gelman.diag '

® Application: “Gelman-Rubin diagnostic for Gibbs sampling,
Normal distribution.R"



Assessing model fit in a Bayesian setting

How to assess whether the model fits the data well?
And how to compare two different models?
No R? or pseudo-R?: these are “frequentist” concepts

Instead, Bayesians (e.g., Congdon (2009), Gelman (2007)) use
posterior predictive comparisons

P (y replicated ‘y observed) = / P (y replicated |y observed 9)p (0 |y observed ) do



Assessing model “fit" in a Bayesian setting (cont.)

® Posterior predictive comparisons:
@ simulate data from the estimated model parameters
@® compare against the observed data

©® use an overall fit measure to assess model fit

® Possible criteria to assess the posterior predictive comparisons:

% of correct predictions

whether the true data is in the 95% Cl of the replicates
® deviance

® kurtosis, skewness (for normal data)



Example: Computing the % of correct predictions

® Application: “Posterior Predictions Probit.R”
® This script:
@ Fits a simple (non-hierarchical) probit model
@® Checks covergence

© Reports posterior summaries (means, 95% highest posterior
density (HPD) intervals

O And computes the % of correct predictions

® Exercise: Compute other measures of goodness of fit based on
the same model



Assessing model “fit" in a Bayesian setting (cont.)

® More formally, for each simulated value of the parameter s,
generate a replicated data set yp, areq

® Choose a statistic D, and compare D(y;,jicareq) 282INSt
D (y observed )
® Quantify the discrepancy

® for instance, compute that % of correct predictions, or the
proportion of times that the replicated y is above/below the
“true” y

® compute a “Bayesian p-value”:

pP= 'Dr(D(YrepIicated) > D(YObserved))

e Systematic differences between replicate & actual data
indicate model limitations



Comparing different models
® Two main tools:

® DIC: Deviance Information Criterion (most used)

¢ Information criterion (like AIC or BIC), but
specifically designed for MCMC simulations

® In a nutshell: compares the expected log likelihood
of the model against the likelihood at the posterior
parameter means

® Always select the model with the lowest DIC

® “Rule of thumb": DIC differences larger than 3
provide overwhelming evidence in favor of the model
with the lower value (Ntzoufras 2011)



Comparing different models (cont.)

@® BF: Bayes factors (less used, but comes "with” Stata)

® Ratio of the likelihood of two models

® Higher BF means more likely that the model is
supported by the data

® BF > 10 provides strong evidence for the model with
higher value (Kass & Raftery 1995)



Speeding up Bayesian Computations

Bayesian models may be quite slow to run
This is probably their main disadvantage
Various approaches to deal with this issue
® e.g., variational Bayesian inference, Hamiltonian Monte carlo
But even MCMC algorithms can be accelerated
We will mention 2 related approaches here
® Rcpp: integrating R with C4++

® Rcpp + HPC



Integrating R with C++: Rcpp

e A first way to speed up MCMC algorithms is using Rcpp

® Rcpp allows “running C4++ code” from R

® learning to code in C++4 from scratch is difficult

® using Rcpp is much easier!

e Key reference: Eddelbuettel, Dirk. 2013. Seamless R and
C++ Integration with Rcpp. New York, NY: Springer.



Comparison - Logit model in R and Rcpp

® | ook at the R file: “comparison_logit.R"

® |t compares the execution time of a Metropolis-Hastings
algorithm fitted using:

OR

@ Rcpp

® On average, the “pure” R code takes almost 6 times as much
as the Rcpp code



Running Rcpp in the cluster

® To further accelerate execution, we can use an HPC cluster

® Exeter has the ISCA cluster avalailable:

® 128 GB nodes

® https://emps.exeter.ac.uk/computer-science/facilities/

e Key advantage for Bayesians: parallelization



MCMC problems are “embarrasingly parallel”

® |f we have multiple cores, we can “send each MCMC chain” to
a different core

We don’t need an HPC cluster for parallelization

® multiple R packages do parallelization across clusters of the
same computer

® e.g., snow, doParallel
However, typical desktop/laptop computer has 8 cores

® with 3 chains per job, this means we can efficiently run at
most 2 jobs in parallel

With an HPC cluster, we can run tens/hundreds of
multi-chain MCMC algorithms in parallel



And the cost of paralellization is minimal

Compare

® “|logitRcpp.cpp”

® and “LogitRcppHPC.cpp”
Cost: 5 more lines of code

Benefit: Cut execution time in less than half

And this is a very simple problem (1 job, 3 chains)

® Potential gains are huge!



Comparison of execution times

e Comparison: 100 replications ( “estimations”) of each model
® Each model runs 3 MCMC chains of length 1,000

® See “comparison_logit_parallel.R"

Table: Execution Times (in nanoseconds)

Model Time Ratio
R 3,657.47 13.17
Recpp 589.61 2.12

Rcpp in ISCA  277.60 1.00




Additional readings

® Eddelbuettel (2013). Seamless R andC++ Integration with
Rcpp. New York, NY: Springer.

® Gelman and Hill (2007): Data Analysis using Regression and
Multilevel /Hierarchical Models

© Gill (2008): Bayesian Methods: A Social and Behavioral
Approach

® Hahn, Eugene (2014): Bayesian Methods for Management
and Business - Pragmatic Solutions for Real Problems.

@ Jackman (2009): Bayesian Analysis for the Social Sciences
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