
Advanced Bayesian Methods

Gabriel Katz

University of Exeter
Q-Step Centre

g.katz@exeter.ac.uk

Outline: Advanced Bayesian Computation

• The purpose of these notes is to take a closer look at the
“nuts and bolts” of Bayesian inference

• We will build on “Introduction to Bayesian Data Analysis” by
Andrei Zhirnov (Exeter, Q-Step)

• And focus on:

1 The main algorithms used in modern Bayesian computation
(Gibbs sampler and Metropolis-Hastings)

2 Convergence criteria: how do we know when our Bayesian
estimation “is ready”?

3 Goodness-of-fit measures: how do we know whether our
Bayesian model does a good job describing our data?

4 Strategies to speed up execution time (integrating R with
C++, Bayesian inference & High Performance Computing)

Recap: Bayes Theorem

• Let A and B be two events.

• Suppose we observe event B.

• What is the probability of observing A, given that we observed
B?

• Bayes Theorem:

P(A|B) =
P(B|A)× P(A)

P(B)
(1)

Recap: Bayes Theorem

• Let A and B be two events.

• Suppose we observe event B.

• What is the probability of observing A, given that we observed
B?

• Bayes Theorem:

P(A|B) =
P(B|A)× P(A)

P(B)
(1)

• In (1):

• P(A|B) is the probability of A conditional on B

• P(B|A) is the conditional probability of B given A

• P(B) is the marginal probability of B

• We can extend (apply) Bayes Theorem to random variables

• this is the cornerstone of all Bayesian inference

• because parameters are random variables within the Bayesian
paradigm

• which follow certain probability distributions

• In (1):

• P(A|B) is the probability of A conditional on B

• P(B|A) is the conditional probability of B given A

• P(B) is the marginal probability of B

• We can extend (apply) Bayes Theorem to random variables

• this is the cornerstone of all Bayesian inference

• because parameters are random variables within the Bayesian
paradigm

• which follow certain probability distributions

Bayes Theorem & Bayesian Inference

• Let

• θ denote a parameter of interest (i.e., a regression coefficient,
a variance parameter)

• f (θ) be the probability distribution of θ

• f (Data|θ) denote the sampling distribution of the data

• i.e., the probability model followed by the data, given θ

• ≈ likelihood function

• Applying Bayes Theorem:

f (θ|Data) =
f (Data|θ)f (θ)

f (Data)
(2)

(
or: f (θ|Data) =

f (Data|θ)f (θ)∫
f (Data|θ)f (θ)

=
f (Data|θ)f (θ)

f (Data)

)

• In Bayesian “parlance”:

1 f (θ) is the prior distribution of θ

• i.e., before observing the data; what does the analyst
“believe” about θ’s distribution?

2 f (Data|θ) is the probability (sampling) distribution of the data

3 f (θ|Data) is the posterior distribution of θ

• Since f (Data) does not depend on θ - i.e., it is a “constant” -
we can write (2) as:

f (θ|Data) ∝ f (Data|θ)f (θ) (3)

• (3) Gives us the “Bayesian mantra”:

Posterior distribution ∝ Likelihood× Prior distribution

• Informally:

• We start from a prior distribution for θ (before “observing”
the data)

• We “observe” the data

• We update θ’s distribution (i.e., update the prior once we
observe the data) ⇒ posterior distribution

• Since f (Data) does not depend on θ - i.e., it is a “constant” -
we can write (2) as:

f (θ|Data) ∝ f (Data|θ)f (θ) (3)

• (3) Gives us the “Bayesian mantra”:

Posterior distribution ∝ Likelihood× Prior distribution

• Informally:

• We start from a prior distribution for θ (before “observing”
the data)

• We “observe” the data

• We update θ’s distribution (i.e., update the prior once we
observe the data) ⇒ posterior distribution

• (3) is the fundamental relationship of Bayesian inference.

• The “whole purpose” of Bayesian inference: deriving the
distribution of θ, given

• the data (explanatory variables, X ; dependent variable(s), Y)

• the data model/likelihood, f (Data|θ)

• the prior distribution assumed for θ, before “observing” the
data

Bayesian inference: the basic procedure

1 Specifying the data likelihood (the distribution of X and Y ,
given θ), f (Data|θ)

2 Specifying the prior distribution for θ, f (θ)

3 Deriving the posterior distribution of θ, f (θ|Data)

4 Once we have f (θ|Data), we can summarize this distribution

• e.g., compute the (posterior) mean, variance, median,
quantiles, etc.

An example of Bayesian inference

• Suppose 2 candidates, A y B, are competing in an election.

• An opinion poll based on a representative sample was
conducted days before the election:

• 1,067 potential voters

• 556 of which stated their intention to vote for A

• 511 declared they would vote for B

• Based on these data, A hires a Bayesian researcher in order to
assess his chances of winning the election

• Let’s go over the 4 steps of Bayesian analysis in this case

Step 1: Specifying the data model

• Each survey participant has two choices (ignoring abstention):

• vote for A

• vote for B

• We can think of this as n = 1067 Bernoulli trials, where
success=“voting for A”.

• Let p denote the probability of success, and Yi the choice of
individual i = 1, 2, . . . , 1067, with:

• Yi = 1 if i would vote for A

• Yi = 0 if i would vote for B

• The sampling distribution of the data can be then written as:

f (Data|p) =
1067∏
i=1

pYi (1− p)1−Yi (4)

• Based on the responses to the public opinion poll:

f (Data|p) = p556 (1− p)511 (5)

• The posterior distribution of p will then be given by:

f (p|Data) ∝ p556 (1− p)511 f (p)

• The sampling distribution of the data can be then written as:

f (Data|p) =
1067∏
i=1

pYi (1− p)1−Yi (4)

• Based on the responses to the public opinion poll:

f (Data|p) = p556 (1− p)511 (5)

• The posterior distribution of p will then be given by:

f (p|Data) ∝ p556 (1− p)511 f (p)

Step 2: choosing the prior distribution for p

• A natural prior distribution for parameters representing rates
or proportion is the Beta distribution

• In fact, the Beta distribution is a conjugate prior for
parameters representing rates or proportions

• We say that f (θ) is a conjugate prior distribution when
• f (p|Data) follows the same distribution as f (θ)

• In our application, if f (p) ∼ Beta

f (p|Data) = p556 (1− p)511 × f (p) ∼ Beta

The Beta distribution

• Let p be a random variable, 0 < p < 1

• If p follows a Beta distribution, its density function is:

f (p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (6)

with parameters α y β, and Γ() a gamma function:

Γ(n) =

∫ ∞
0

un−1exp(−u)du, n > 0

with

• Γ(n) = (n − 1)! for n a positive integer

• The characteristics and central moments of a Beta random
variable depend on α y β

• E (p) = α
(α+β)

• Var(p) = αβ
(α+β)2(α+β+1)

• R:“Beta Distribution.R”

• The characteristics and central moments of a Beta random
variable depend on α y β

• E (p) = α
(α+β)

• Var(p) = αβ
(α+β)2(α+β+1)

• R:“Beta Distribution.R”

• The plot of the Beta density shows that the Bayesian analyst
must choose

• not only the prior distribution for the parameters (e.g., p)

• but also the parameters of this prior distribution (in this case,
α & β)

• The parameters of a prior distribution are known as the
hyperparameters

• These hyperparameters will influence the “weight” that the
prior distribution has on the posterior distribution of p

• For instance, suppose the analyst has no prior information
about the possible result of the election.

• From (6), it follows that if the analyst chooses the following
values for the hyperparameters:

• α = 1

• β = 1

the prior distribution for p will be:

f (p) =
Γ(1 + 1)

Γ(1)Γ(1)
p1−1(1− p)1−1 =

2!

0!0!
p0(1− p)0

⇒ f (p) ∝ p0(1− p)0 = 1

• And therefore, the posterior distribution for p will be:

f (p|Data) ∝ p556(1− p)511 × 1

⇒ f (p|Data) ∝ p556(1− p)511

• In other words, the prior distribution adds no information to
the posterior

• The posterior distribution will be completely determined by
the data

• This type of prior distribution is known as vague or weakly
informative prior

• when vague priors are used, Bayesian inference is ≈ maximum
likelihood inference

• At the other extreme, suppose the analyst also has
information from previous opinion polls:

Poll n Votes for A Votes for B

Last month 685 346 339

2 months ago 637 312 325

3 months ago 628 284 344

Total 1,950 942 1,008

• The analyst could choose to incorporate this information in
the prior f (p).

• For instance:

f (p) =
Γ(1950)

Γ(942)Γ(1008)
p942−1(1− p)1008−1

• And thus the posterior distribution would become

f (p|Data) ∝ p556(1− p)511 × p941(1− p)1007

⇒ f (p|Data) ∝ p1497(1− p)1518 (7)

Step 3: Deriving the posterior distribution for p

• In sum, we arrived at two possible posterior distributions for
p

• With a vague prior Beta distribution:

f (p|Data) = p556(1− p)511

• With an informative Beta prior distribution:

f (p|Data) = p1497(1− p)1518

• In both cases, we have a Beta posterior

• because we chose a conjugate prior distribution

• The choice of hyperparameters α and β will determine
whether f (p|Data) will be affected

• primarily by the data under consideration (if the prior is vague
or weakly informative)

• by the data and prior information (if the prior distribution is
informative)

Step 4: Summarizing f (p|Data)

• Assuming that f (p) ∝ Beta(984, 1008)

• & given the data model f (Data|p)

• we have: f (p|Data) ∝ Beta(1498, 1519)

• So . . . what is the “estimate” of p?

• Bayesian inference does not lead to “estimates” . . . it leads to
(posterior) probability distributions for parameters like p

• R: “p - Posterior Distribution.R”

• So, how do we summarize f (p|Data)?

• We can compute the expected value of p:

E (p) =
α

α + β
=

1498

14998 + 1519
= 0.497 (8)

• That is, the expected proportion of votes for A is 49.7%

• We can also compute a 95% credibility interval for p

• R: “Posterior summaries for p.R”

• So, how do we summarize f (p|Data)?

• We can compute the expected value of p:

E (p) =
α

α + β
=

1498

14998 + 1519
= 0.497 (8)

• That is, the expected proportion of votes for A is 49.7%

• We can also compute a 95% credibility interval for p

• R: “Posterior summaries for p.R”

• We can also compute the probability that A wins/loses the
election

P(A wins) = P(p ≥ 0.5) = 0.351

P(A loses) = P(p ≤ 0.5) = 0.649

• R: “Posterior summaries for p.R”

Side note: Comparison between f (p), f (Data|p), y
f (p|Data)

• Note that f (p|Data) is a “compromise” between

• f (p)

• and f (Data|p)

• When we use an informative f (p), f (p|Data) is “closer” to
f (p) than to f (Data|p)

• because f (p) carries more weight than f (Data|p)

• 1,950 respondents in previous polls

• but only 1,067 in the poll under study

• The situation would have been different with a “vague” f (p)

Comparison: f (p), f (Data|p), y f (p|Data), vague f (p)

• In this case:

• E (p) = 0.55

• 95% creditibility interval: [0.49, 0.55]

• Prob(A wins) := 0.915

• ⇒ Critical role of prior distributions in Bayesian inference

A first approximation to simulation-based inference

• In the previous exercise, we derived
f (p|Data) ∼ Beta(1498, 1519)

• Based on this, we could compute E (p|Data) applying the
formula for the expectation of a Beta random variable

E (p|Data) =
α

α + β
(9)

• (9) follows from

E (p|Data) =

∫ 1

0
p × Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

A first approximation to simulation-based inference

• In the previous exercise, we derived
f (p|Data) ∼ Beta(1498, 1519)

• Based on this, we could compute E (p|Data) applying the
formula for the expectation of a Beta random variable

E (p|Data) =
α

α + β
(9)

• (9) follows from

E (p|Data) =

∫ 1

0
p × Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

• Similarly, we could compute P(p > 0.5|Data) from

1− P(p < 0.5|Data) = 1−
∫ 0.5

0

Γ(α + β)

Γ(α)Γ(β)
tα−1(1− t)β−1dt

• Now, suppose we could not “solve” these integrals

• How could we compute E (p|Data), P(p > 0.5|Data)?

• or other quantities of interest like the median, the credible
intervals, etc.?

• “Bayesian answer”: Simulations!

• Similarly, we could compute P(p > 0.5|Data) from

1− P(p < 0.5|Data) = 1−
∫ 0.5

0

Γ(α + β)

Γ(α)Γ(β)
tα−1(1− t)β−1dt

• Now, suppose we could not “solve” these integrals

• How could we compute E (p|Data), P(p > 0.5|Data)?

• or other quantities of interest like the median, the credible
intervals, etc.?

• “Bayesian answer”: Simulations!

• Similarly, we could compute P(p > 0.5|Data) from

1− P(p < 0.5|Data) = 1−
∫ 0.5

0

Γ(α + β)

Γ(α)Γ(β)
tα−1(1− t)β−1dt

• Now, suppose we could not “solve” these integrals

• How could we compute E (p|Data), P(p > 0.5|Data)?

• or other quantities of interest like the median, the credible
intervals, etc.?

• “Bayesian answer”: Simulations!

• We can generate S values from a Beta(1498, 1519)
distribution

• Let’s write these S values as p1, p2, . . . , pS

• We can compute E (p|Data) as∫
p f (p|Data) ≈

∑S
s=1 p

s

S
(10)

• Similarly, we can compute Var(p) as∫
(p − E (p|Data))2f (p|Data) ≈

∑S
s=1(ps − p̄)2

S
(11)

with p̄ obtained from (10)

• Likewise, we can compute any other quantity of interest using
simulations

• P(p > 0.5|Data)

• credibility intervals, etc.

• R: “Simulations from a Beta posterior.R”

Monte Carlo Integration

• More generally, suppose we want to compute

E

(
h(θ)

)
=

∫
h(θ)f (θ|Data)dθ (12)

where:

• θ is the parameter of interest

• h(θ) is a function of θ

• Solving (12) analytically can be quite difficult

• But suppose we can generate S independent values from
f (θ|Data):

θ1, θ2, . . . , θs ∼ f (θ|Data) (13)

• We can then compute E

(
h(θ)

)
as:

E

(
h(θ)Data

)
≈ h̄ =

∑S
s=1 h(θs)

S
(14)

• This is the principle behind Monte Carlo integration
(simulation)

• series of techniques to compute probabilities and moments
based on values simulated from a probability distribution

• instead of using “calculus”

Why does Monte Carlo integration (simulation) work?

• Under very general conditions, a (certain version) of the law
of large numbers guarantees that∑S

s=1 h(θs)

S
→ E

(
h(θ)

)
(15)

as S →∞

• Important: it is not n that “goes to” ∞
• but rather S , the number of values simulated (generated) from

f (θ|Data)

• With modern computers, it is very easy and cheap to generate
large number of values S from f (θ|Data)

• Monte Carlo integration is thus a very general and powerful
approach

• Any integral or sum can be expressed as the expectation of a
random variable with resepect to a certain probability
distribution

• In other words, we can compute expectations, variances,
quantiles, etc. using Monte Carlo integration

• As long as we can directly generate S independent
values from f (θ|Data)

• This is not always possible, though.

Markov chain Monte Carlo (MCMC) simulation

• In the previous example (two-candidate election), it was very
easy to generate values from f (θ|Data)

• or, more specifically, f (p|Data)

using a simple R command (“rbeta”)

• In other cases, this is more difficult

• e.g., models with multiple parameters

• models for which f (θ|Data) does not have a closed form

• So we need specific routines/algorithms to sample from
f (p|Data)

• For example, let’s assume that

f (θ|Data) ∝ 2θ + 3

40
0 < θ < 5 (16)

• There is no “command” or “canned routine” allowing us to
generate values from (22).

• “rbeta” in R is no longer useful for us

• or any other random generation function available in R (or
MATLAB, or Stata, or Python) for that matter

• In such circumstances, me need more “specialized” algorithms
to generate samples from f (θ|Data)

• There are multiple Monte Carlo simulation methods (routines,
algorithms) to deal with this sort of cases

• e.g. importance sampling

• rejection sampling

• Bayesian statistics relies on Markov chain Monte Carlo
simulations (MCMC)

Basic idea behind MCMC simulations

• The denomination “Markov chain Monte Carlo (MCMC) refers
to the two key “components” of the simulation techniques
that conform the basis of modern Bayesian computation

1 We want to “learn” about the posterior distribution of a
parameter θ, f (θ|Data), using Monte Carlo simulations

• rather than analytically solving for the moments (expectation,
variance, etc.) of f (θ|Data)

• we are going to simulate values from f (θ|Data)

2 Those values are going to be simulated form a Markov chain

• because (15) holds in this case

Markov chain

• A sequence X 0,X 1,X 2, . . . of random variables

• uni o multi-variate

is a Markov chain if:

P(X t+1|X t ,X t−1, . . . ,X 0) = P(X t+1|X t) ∀s ∈ N (17)

• That is, only the value(s) of X en t is (are) relevant for the
distribution of X in t + 1

• Under general conditions, the Markov chain converges - in
distribution - to its stationary distribution as t →∞
• regardless of the chain’s starting point

• The conditions under which a Markov chain converges to its
stationary distribution are rather “technical”

1 Irreductibility: Any given state of X can be reached from any
other state in a finite number of moves

2 Aperiodicity: the chain does not cyclically return to a
previous state

• Technical references and conditions under which they hold:
• Geyer (1992), Besag y Green (1993), y referencias

• More important for our purposes: the conditions under which
a Markov chain converges to its stationary distribution are
quite general

• for practical purposes, they hold for the vast majority of social
science models

MCMC simulations to approximate f (θ|Data)

• Let’s suppose that:

• We replace X in the previous definition with a parameter θ

• We replace the index t with s (simulations)

• The basic idea behind MCMC simulations is to “construct” a
Markov chain such that:

• starting from an initial, arbitrary value of θ, θ0

• we can generate a sequence of samples θs , each of which
depends only on θs−1, s = 1, . . . ,S

• and that sequence convergences to the stationary distribution
f (θ|Data)

• The same idea generalizes to vectors of parameters Θ

Two main MCMC simulation techniques

• Most econometric/statistical models use in the social science
involve several parameters, relatively “complex” posterior
distributions, etc

• impossible or tedious to solve analytically

• Modern Bayesian inferences resorts to two basic techniques
(algorithms) to “build” Markov chains that converge to
f (Θ|Data)

1 Gibbs sampling:

2 Metropolis-Hastings algorithm

1 Gibbs sampling:

• the most basic algorithm in Bayesian inference

• applied when it is impossible to simulate from the (joint)
posterior distribution of the parameters

• but we can “split” this joint posterior distribution into a series
of simpler conditional distributions

• from which it is easier to generate samples

2 Metrópolis-Hastings algorithm

• generalization of Gibbs sampling

• useful when it is impossible to generate values even from these
conditional posterior distributions

Gibbs sampling

• Suppose we have a vector of parameters Θ, with K elements
Θ = (θ1, . . . , θK)

• Suppose it is impossible to draw samples from

f (Θ|Data) = f (θ1, θ2, . . . , θK |Data)

• However, suppose I can “split” the joint posterior
distribution into a series of conditional distributions:

f (Θ|Data) =f (θ1|θ2, . . . , θK ,Data)

× f (θ2|θ1, θ3, . . . , θK ,Data) · · · ×
f (θK |θ1, . . . , θK−1,Data)

• Or, equivalently,

f (Θ|Data) = f (θ1|θ−1,Data)×
f (θ2|θ−2,Data) · · · ×
f (θK |θ−K ,Data)

where θ−k , k = 1, . . . ,K , denotes all the elements of Θ
except for θk

• If:

• We cannot draw samples from f (Θ|Data)

• But can draw samples from f (θk |θ−k ,Data), k = 1, . . . ,K

• ⇒ I can use Gibb sampling to approximate f (Θ|Data)

Gibbs sampling “steps”

1 Start from initial arbitrary values of the parameters

• θ0: θ0
1, θ

0
2, . . . , θ

0
K

2 Draw samples:

θ1
1 ∼ f (θ1

1|θ0
2, , θ

0
K ,Data)

θ1
2 ∼ f (θ2|θ1

1, θ
0
3, . . . , θ

0
K ,Data)

. . .

θ1
K ∼ f (θK |θ1

1, θ
1
2, . . . , θ

1
K−1,Data)

3 Repeat step 2 S times, obtaining values

θsk ∼ f (θk |θs1, . . . θsk−1, . . . , θ
s−1
K ,Data)

at each iteration s = 2, . . . ,S of the algorithm

Gibbs sampling in practice - Example

• Let Y1,Y2, . . . ,Yn be a random sample from N(µ, σ2)

• µ, σ2 unknown

• Goal: “estimate” µ y σ2 using Bayesian inference (MCMC
simulations)

• i.e., derive the posterior distributions of µ and σ2

• We resort to the usual “Bayesian mantra”:

• Posterior distribution ∝ Likelihood × Prior distribution

• In this example:

f (µ, σ2|Y) ∝ f (Y|µ, σ2)× f (µ, σ2) (18)

• Let’s follow the 4 steps of Bayesian inference seen before:

1 Defining the likelihood for (Y1,Y2, . . . ,Yn), given µ y σ2

2 Specifying the prior distributions for parámeters µ and σ

3 Deriving - or approximating - the posterior distributions of µ
and θ

4 Summarizing these posterior distributions

Step 1: specifying f (Y|µ, σ2)

• f (Y|µ, σ2) is given by:

f (Y|µ, σ2) =
n∏

i=1

1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
1

(2πσ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

) (19)

• Hence, the posterior distribution for f (µ, σ2|Y) will be given
by:

f (µ, σ2|Y) ∝ 1

σ2n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
f (µ, σ2) (20)

Step 2: Prior distributions for f (µ, σ2)

• Two options:

1 Defining a joint prior distribution for µ and σ2, f (µ, σ2)

2 Defining a priori independent prior distributions for µ and σ2

• i.e., assuming that the prior distribution about µ is
independent from the prior distribution about σ2

f (µ, σ2) = f (µ)× f (σ2) (21)

• The second approach is generally easier

• How do we choose f (µ) y f (σ2)?

• Conjugate priors are always useful when applying Gibbs
sampling

• because this will help obtaining (conditional) posterior
distributions for µ and σ2 from which it is easy to sample

• property of conjugate prior distributions

• The conjugate prior for µ is the Normal distribution:

f (µ) ∝ N(m, σ2
µ) (22)

where m and σ2
µ are hyperparameters of this prior

distribution

• Easy to simulate from, using “rnorm”

• How do we choose f (µ) y f (σ2)?

• Conjugate priors are always useful when applying Gibbs
sampling

• because this will help obtaining (conditional) posterior
distributions for µ and σ2 from which it is easy to sample

• property of conjugate prior distributions

• The conjugate prior for µ is the Normal distribution:

f (µ) ∝ N(m, σ2
µ) (22)

where m and σ2
µ are hyperparameters of this prior

distribution

• Easy to simulate from, using “rnorm”

• If the analyst has prior information about µ

• e.g., from previous studies

she can use this information to specify m and σ2
µ

• ⇒ the prior distribution for µ would then be both conjugate
and informative

• If there is no prior information about µ, the analyst would go
for a conjugate and vague prior distribution

• For instance:

• µ = 0

• σ2
µ “large” (e.g., 100)

• If the analyst has prior information about µ

• e.g., from previous studies

she can use this information to specify m and σ2
µ

• ⇒ the prior distribution for µ would then be both conjugate
and informative

• If there is no prior information about µ, the analyst would go
for a conjugate and vague prior distribution

• For instance:

• µ = 0

• σ2
µ “large” (e.g., 100)

• The conjugate prior distribution for the variance of a normal
variable is the Inverse Gamma

• The pdf of an Inverse Gamma distribution is

f (σ2) ∝ (σ2)−(α+1)exp(−β/σ2) (23)

with hyperparameters:

• α > 0, affecting the shape of f (σ2)

• β > 0, affecting the scale of f (σ2)

• Note that R does not have a “canned command” to generate
values from an Inverse Gamma distribution

• We would need to use specialized packages (like “bayesAB”)

• Or - even easier - resort to the following property:

• If σ2 ∼ Gamma Inversa(α, β)

• ⇒ 1/σ2 ∼ Gamma(α, β)

• We can use the “rgamma” command in R to generate 1/σ2

• and then obtain the inverse

Step 3: Deriving posterior distributions for µ and σ2

• From (20), (22) and (23), we have that:

f (Y|µ, σ2) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)

f (µ) ∝ 1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)

f (σ2) ∝ 1

(σ2)(α+1)
exp(−β/σ2)

• Hence, the posterior distribution of the parameters is:

f (µ, σ2|Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)
×

1

σ2(α+1)
exp(−β/σ2)

(24)

• Problem: (24) has no “known” form

• it is difficult to obtain means, variances, etc. analytically

• but also impossible to simulate from (24)!

• What can we do?

⇒ Gibbs sampling!

• We cannot draw samples from f (µ, σ2|Y)

• But let’s try to express f (µ, σ2|Y) as:

f (µ, σ2|Y) = f (µ|σ2,Y)× f (σ2|µ,Y) (25)

where:

• f (µ|σ2,Y) is the conditional posterior distribution of µ

• taking σ2 (and obviously Y) as given

• f (σ2|µ,Y) is the conditional posterior distribution of σ2

• taking µ (and Y) as given

• What can we do? ⇒ Gibbs sampling!

• We cannot draw samples from f (µ, σ2|Y)

• But let’s try to express f (µ, σ2|Y) as:

f (µ, σ2|Y) = f (µ|σ2,Y)× f (σ2|µ,Y) (25)

where:

• f (µ|σ2,Y) is the conditional posterior distribution of µ

• taking σ2 (and obviously Y) as given

• f (σ2|µ,Y) is the conditional posterior distribution of σ2

• taking µ (and Y) as given

• What can we do? ⇒ Gibbs sampling!

• We cannot draw samples from f (µ, σ2|Y)

• But let’s try to express f (µ, σ2|Y) as:

f (µ, σ2|Y) = f (µ|σ2,Y)× f (σ2|µ,Y) (25)

where:

• f (µ|σ2,Y) is the conditional posterior distribution of µ

• taking σ2 (and obviously Y) as given

• f (σ2|µ,Y) is the conditional posterior distribution of σ2

• taking µ (and Y) as given

Deriving f (µ|σ2,Y)

• From f (µ, σ2|Y):

f (µ, σ2|Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)
×

1

σ2(α+1)
exp(−β/σ2)

• We take all parameters other than µ as constant, and focus
only on the terms that depend on µ

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
× exp

(
−(µ−m)2

2σ2
µ

)

Deriving f (µ|σ2,Y)

• From f (µ, σ2|Y):

f (µ, σ2|Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)
×

1

σ2(α+1)
exp(−β/σ2)

• We take all parameters other than µ as constant, and focus
only on the terms that depend on µ

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
× exp

(
−(µ−m)2

2σ2
µ

)

• With a little bit of algebra:

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1(yi − µ)2

2σ2
− (µ−m)2

2σ2
µ

)

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1 y
2
i − 2µ

∑n
i=1 yi +

∑n
i=1 µ

2

2σ2

− µ2 − 2µm + m2

2σ2
µ

)

exp(−1

2

[σ2
µ

∑n
i=1 y

2
i − 2σ2

µµn ȳ + nσ2
µµ

2 + σ2µ− 2σ2µm + σ2 m

σ2σ2
µ

]
)

• With a little bit of algebra:

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1(yi − µ)2

2σ2
− (µ−m)2

2σ2
µ

)

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1 y
2
i − 2µ

∑n
i=1 yi +

∑n
i=1 µ

2

2σ2

− µ2 − 2µm + m2

2σ2
µ

)

exp(−1

2

[σ2
µ

∑n
i=1 y

2
i − 2σ2

µµn ȳ + nσ2
µµ

2 + σ2µ− 2σ2µm + σ2 m

σ2σ2
µ

]
)

• With a little bit of algebra:

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1(yi − µ)2

2σ2
− (µ−m)2

2σ2
µ

)

f (µ|σ2,Y) ∝ exp

(
−
∑n

i=1 y
2
i − 2µ

∑n
i=1 yi +

∑n
i=1 µ

2

2σ2

− µ2 − 2µm + m2

2σ2
µ

)

exp(−1

2

[σ2
µ

∑n
i=1 y

2
i − 2σ2

µµn ȳ + nσ2
µµ

2 + σ2µ− 2σ2µm + σ2 m

σ2σ2
µ

]
)

• And grouping all the terms that depend on µ:

f (µ|σ2,Y) ∝ exp

(
−1

2

[
µ2(nσ2

µ + σ2)− 2µ(σ2
µnȳ + σ2m) + c

σ2σ2
µ

])

where c =σ2
µ

∑n
i=1 y

2
i + σ2 m is a constant (with respect to µ)

⇒ f (µ|σ2,Y) ∝exp
(
−1

2

[
µ2(nσ2

µ + σ2)− 2µ(σ2
µnȳ + σ2m)

σ2σ2
µ

])
exp

(
−1

2

c

σ2σ2
µ

)

f (µ|σ2,Y) ∝ exp

(
−1

2

[
µ2(nσ2

µ + σ2)− 2µ(σ2
µnȳ + σ2m)

σ2σ2
µ

])

• Dividing the numerator and denominator by nσ2
µ + σ2:

f (µ|σ2,Y) ∝ exp

(
−1

2

[µ2 − 2µ
(σ2

µnȳ+σ2m)

(nσ2
µ+σ2)

σ2σ2
µ

nσ2
µ+σ2

])
(26)

• (26) now resembles the kernel of a known distribution . . .

f (µ|σ2,Y) ∝ exp

(
−1

2

[
µ2(nσ2

µ + σ2)− 2µ(σ2
µnȳ + σ2m)

σ2σ2
µ

])

• Dividing the numerator and denominator by nσ2
µ + σ2:

f (µ|σ2,Y) ∝ exp

(
−1

2

[µ2 − 2µ
(σ2

µnȳ+σ2m)

(nσ2
µ+σ2)

σ2σ2
µ

nσ2
µ+σ2

])
(26)

• (26) now resembles the kernel of a known distribution . . .

• Completing the square:

f (µ|σ2,Y) ∝exp
[
−

(
µ− σ2

µnȳ+σ2m

nσ2
µ+σ2

)2

2
σ2σ2

µ

nσ2
µ+σ2

]
×

exp

[
−

(
σ2
µnȳ+σ2m

nσ2
µ+σ2

)2

2
σ2σ2

µ

nσ2
µ+σ2

]

• And since the second term is again constant (with respect to
µ):

f (µ|σ2,Y) ∝ exp

[
−

(
µ− σ2

µnȳ+σ2m

nσ2
µ+σ2

)2

2
σ2σ2

µ

nσ2
µ+σ2

]
(27)

• (27) shows that f (µ|σ2,Y) is Normal, with mean:

σ2
µnȳ + σ2m

nσ2
µ + σ2

(28)

• and variance:

σ2σ2
µ

nσ2
µ + σ2

(29)

• The important part is: we know how to draw samples from
(27)

• e.g., using the “rnorm” command in R

• Note that the expectation of f (µ|σ2,Y) is a combination of:

• the prior mean m

• and the sample mean, ȳ

• The relative weight of m and ȳ depends on:

1 the sample size, n: the larger the value of n, the “heavier” the
weight of the data vis-á-vis m

2 the prior variance, σ2
µ: the larger the value of σ2

µ, the heavier
the weight of the data vis-a-vis the prior information

• when there is more uncertainty about the prior information, we
place more emphasis on the data

3 the variance σ2: the larger the value of σ2, the heavier the
weight of m

• when the data is less informative, we place more emphasis on m

Derivation of f (σ2|µ,Y)

• To derive f (σ2|µ,Y), we start again from f (µ, σ2|Y) and
focus only on those terms that depend on σ2

• treating every other term as “constant”

• That is, starting from:

f (µ, σ2|Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)
×

1

σ2(α+1)
exp(−β/σ2)

Derivation of f (σ2|µ,Y)

• To derive f (σ2|µ,Y), we start again from f (µ, σ2|Y) and
focus only on those terms that depend on σ2

• treating every other term as “constant”

• That is, starting from:

f (µ, σ2|Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

(σ2
µ)1/2

exp

(
−(µ−m)2

2σ2
µ

)
×

1

σ2(α+1)
exp(−β/σ2)

f (σ2|µ,Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

σ2(α+1)
exp(−β/σ2)

(30)

• And, grouping terms:

f (σ2|µ,Y) ∝ 1

(σ2)(n/2+α+1)
exp

[
−
(∑n

i=1(yi − µ)2

2σ2
+

β

σ2

)]

f (σ2|µ,Y) ∝ 1

(σ2)(n/2+α+1)
exp

(
−

∑n
i=1(yi−µ)2

2 + β

σ2

)
(31)

f (σ2|µ,Y) ∝ 1

(σ2)n/2
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
×

1

σ2(α+1)
exp(−β/σ2)

(30)

• And, grouping terms:

f (σ2|µ,Y) ∝ 1

(σ2)(n/2+α+1)
exp

[
−
(∑n

i=1(yi − µ)2

2σ2
+

β

σ2

)]

f (σ2|µ,Y) ∝ 1

(σ2)(n/2+α+1)
exp

(
−

∑n
i=1(yi−µ)2

2 + β

σ2

)
(31)

• (31) is the kernel of an Inverse Gamma distribution, with
parameters:

• α′
= n/2 + α

• β′
=
∑n

i=1(yi−µ)2

2 + β

• And, again, we know how to draw samples from this
distribution!

Recap - Gibbs sampling in this example

• In sum, we had arrived to a joint posterior distribution we
did not know how to sample from: f (µ, σ2|Y)

• But we could “split” this joint posterior in two conditional
posterior distributions, from which it is easy to draw
samples

1 A normal distribution, f (µ|σ2,Y)

2 And an inverse gaussian distribution, f (σ2|µ,Y)

• Hence, rather than drawing samples of µ and σ from
f (µ, σ2|Y), we obtain them from (1) and (2)

Steps in our Gibbs sampling algorithm

1 Choose the hyperparameters for the prior distributions for µ
y σ2

• m and σ2
µ

• α and β

2 Propose initial values for µ0 y σ2
0

3 Draw σ2
1 from an Inverse Gamma distribution with parameters

α
′

= n/2 + α

β
′

=

∑n
i=1(yi − µ0)2

2
+ β

4 Draw µ1 from a Normal distribution with:

Mean =
σ2
µnȳ + σ2

1m

nσ2
µ + σ2

1

Variance =
σ2

1σ
2
µ

nσ2
µ + σ2

1

5 Repeat steps 3 and 4 for s = 2, . . . ,S , taking µs−1 and σ2
s−1

as starting values for iteration s

• S must be large enough so that convergence to the stationary
distribution occurs

• i.e., large enough for the sample draws to their “stationary
state”

Gibbls sampling in R

• R: “Gibbs sampling - Normal distribution.R”

Gibbls sampling in R

• R: “Gibbs sampling - Normal distribution.R”

Exercise - Gibbs sampling

• Assume we have the same data

• i.e., a sample Y1,Y2, . . . ,Yn from a N(µ, σ2)

• But suppose we adopt the following prior distributions for
the parameters:

f (µ) = constant

f (σ2) ∝ 1/σ2

• The exercise consists of 2 tasks

1 Verify that the resulting conditional posterior distributions
are:

f (µ|σ2,Y) ∝ N

(
ȳ ,
σ2

n

)
f (σ2|µ,Y) ∝ Gamma Inversa(α, β)

with:
α = n/2

β =

∑n
i=1(yi − µ)2

2

2 Verify that you understand the new sampler, contained in
“Gibbs sampling - Normal distribution, alternative priors.R”

Metropolis-Hastings (MH) algorithm

• For some models, drawing samples from the conditional
posterior distributions may be unfeasible

• Hence, Gibbs sampling is not applicable

• However, the M-H algorithm can be used

• Specifically, suppose it is not possible to draw samples of Θ
from its joint posterior density

• or from any of θ’s conditional posterior densities

• However, assume we can draw samples from another
distribution, g()

• Then, we can apply the M-H algorithm

Metropolis-Hastings (MH) algorithm

• For some models, drawing samples from the conditional
posterior distributions may be unfeasible

• Hence, Gibbs sampling is not applicable

• However, the M-H algorithm can be used

• Specifically, suppose it is not possible to draw samples of Θ
from its joint posterior density

• or from any of θ’s conditional posterior densities

• However, assume we can draw samples from another
distribution, g()

• Then, we can apply the M-H algorithm

MH algorithm in a nutshell

1 Start with an initial value of θ, say θ0

2 Draw a “candidate” value for θ, θc , from a proposal density
g(), conditional on θs−1, s = 1, . . . ,S

• i.e., θc ∼ g(θ|θs−1) (Markov chain)

3 Compute:

Ratio =
f (θc |Data)× g(θs−1|θc)

f (θs−1|Data)× g(θc |θs−1)
(32)

4 Generate u ∼ Uniform(0, 1)

5 Compare u against the Ratio in (32):

• If Ratio > u, θs = θc

• If Ratio ≤ u, θs = θs−1

6 Go back to step 2

Some comments about the MH algorithm

• In step 2, the value of θ drawn from g() is initially a
“candidate”, because it is not immediately accepted

• this depends on the comparison between u and the Ratio in
(32)

• Note that this Ratio has two “components”:

1 the relationship between the posterior distributions evaluated
at θc y θs−1

f (θc |Data)

f (θs−1|Data)

• The larger this ratio, the higher the likelihood that θc is a
“good candidate”

Some comments about the MH algorithm

• In step 2, the value of θ drawn from g() is initially a
“candidate”, because it is not immediately accepted

• this depends on the comparison between u and the Ratio in
(32)

• Note that this Ratio has two “components”:

1 the relationship between the posterior distributions evaluated
at θc y θs−1

f (θc |Data)

f (θs−1|Data)

• The larger this ratio, the higher the likelihood that θc is a
“good candidate”

2 The second component is

g(θs−1|θc)

g(θc |θs−1)

the relationship between the proposal densities evaluated at the
previous value of the parameter θ and at the ”candidate” value

• This can be understood as an “adjustment” to take into
consideration how likely is θc with respect to θs

• That is, we are adjusting for the “quality” of the proposal
density

• some g()s may disproportinally “choose”’ very likely/unlikely
values of θc

Some commonly used proposal densities g()

• Normal random-walk:

θc ∼ N(θs−1, σ2
c)

with σ2
c “large”

• Uniform random-walk:

θc ∝ θs−1 + U(a, b)

• The key advantage of these proposals is that they are
symmetric:

• g(θc |θs−1) = g(θs−1|θc)

A symmetric proposal

An asymmetric proposal

• With symmetric proposal, the Ratio in (32) becomes simpler:

Ratio =
f (θc |Data)

f (θs−1|Data)
(33)

• In general, we will work with the logarithm of this ratio:

log(Ratio) = log(f (θc |Data))− log(f (θs−1|Data) (34)

and compare it against log(u), u ∼ Uniform(0, 1)

• For the same reason that we work with the log-likelihood
function in ML estimation

• stability, avoiding overflows

Example: “Estimating” the correlation coefficient of a
bivariate Normal distribution using the MH algorithm

• Assume that (x , y) ∼ Bivariate Normal:

• µx = µy = 0

• σ2
x = σ2

y =1

with density function:

f (x , y) =
1

2π
√

1− ρ2)
exp

(
x2 − 2ρxy − y2

2(1− ρ2)

)
(35)

• Suppose we have a sample (Xi ,Yi), i = 1, . . . , n

• Goal: draw inferences about ρ

• As always:

Posterior distribution ∝ Likelihood× Prior

f (ρ|x , y) ∝ f (x , y |ρ)× f (ρ)

• Let’s assume we have no prior information abut ρ

• except that ρ ∈ (−1, 1)

• Vague prior distribution for ρ: Uniform(−1, 1)

f (ρ) = 1/2

• The posterior distribution for ρ is then:

f (ρ|x , y) ∝ 1

(1− ρ2)n/2
exp

(∑n
i=1 x

2
i − 2ρ

∑n
i=1 xiyi +

∑2
i=1 y

2
i

2(1− ρ2)

)

• No closed form

• cannot draw samples from f (ρ|x , y)

• Can we use Gibbs sampling to draw from the conditional
posterior?

• No (why?)

• ⇒ we are going to resort to the MH algorithm

• To apply MH algorithm, we need to choose a suitable
proposal density g()

• For instance, we can use a symmetric proposal

• because - as we saw - this simplifies computations

• A possible proposal:

ρc = ρs−1 + Uniform(a, b) (36)

with −1 < a < 0, 0 < b < 1 chosen so as to allow the
algorithm to “explore” the parameter space

• For instance:

ρc = ρs−1 + Uniform(−0.1, 0.1)

Steps of our MH algorithm

1 Start from an initial value of ρ

• e.g., ρ0 = 0

2 For s = 1, . . . ,S , draw a “candidate” ρ:

ρc = ρs−1 + Uniform(−0.1, 0.1)

3 Evaluate f (ρ|x , y) at:

• ρc : log(f (ρc |x , y))

• ρs : log(f (ρs−1|x , y))

and compute the log-ratio: log(f (ρc |x , y)− log(f (ρs−1|x , y)

4 Draw u ∼ Uniform(0, 1)

5 Compare the log-ratio (step 3) against log(u)

• If (log(f (ρc |x , y)− log(f (ρs−1|x , y)) > log(u)⇒ ρs = ρc

• Else if
(log(f (ρc |x , y)− log(f (ρs−1|x , y)) ≤ log(u)⇒ ρs = ρs−1

• R: “MH algorithm for rho.R”

4 Draw u ∼ Uniform(0, 1)

5 Compare the log-ratio (step 3) against log(u)

• If (log(f (ρc |x , y)− log(f (ρs−1|x , y)) > log(u)⇒ ρs = ρc

• Else if
(log(f (ρc |x , y)− log(f (ρs−1|x , y)) ≤ log(u)⇒ ρs = ρs−1

• R: “MH algorithm for rho.R”

MH algorithm - sampled values for ρ

Combining Gibbs sampler & Metropolis steps

• For most social science models, we are typically going to use a
combination of Gibbs sampling and Metropolis steps models

• Example: hierarchical logit model:

• i individual-level observations, i = 1, . . .N

• in j = 1, . . . J countries

P(Yi ,j = 1) =
exp(X

′
i ,jβ + ηj)

1 + exp(X
′
i ,jβ + ηj)

(37)

with ηj ∼ N(0, σ2)

• Parameters:

1 β

2 ηj , j = 1, . . . , J

3 σ2

• Assuming:

1 N(0, 100I) priors for β

2 N(0, 100) priors for ηj , j = 1, . . . , J

3 And conjugate Inverse Gamma (0.1, 0.1) priors for σ2

we can show that:

• β and ηj have no closed-form conditional posterior
distributions

• but σ2 has an Inverse Gamma conditional posterior
distribution

• Specifically, the conditional posterior distributions for the
parameters are:

f (β|η, σ2) ∝
exp(X

′
i ,jβ + ηj)

1 + exp(X
′
i ,jβ + ηj)

× N(0, 100I) (38)

f (ηj |β, η−j , σ2) ∝
exp(X

′
i ,jβ + ηj)

1 + exp(X
′
i ,jβ + ηj)

× N(0, 100) (39)

f (σ2|β, η) ∝ 1

(σ2)(J/2+0.1+1)
exp

(
−

0.1 +
∑J

j=1 η
2
j

2

σ2

)
(40)

• The distributions in (38) and (39) have no closed form

• But (40) is the kernel of an Inverse Gamma distribution with

parameters 0.1 + J/2 and 0.1 +
∑2

j=1 η
2
j

2

• Hence, we will need to resort to

1 M-H steps to draw samples for β and ηj , j = 1, . . . , J

2 Gibbs sampling to draw samples for σ2

• Application: “Hierarchical Logit.R”

Exercise

• If we use a probit rather than a logit model, all the
conditional posterior distributions have known closed forms

• So, when fitting a hierarchical probit model, we only need
Gibbs sampling

• no M-H steps are needed

• Convergence is typically faster.

• Application: “Hierarchical Probit.R”

Assessing Convergence

• In our exercises - Gibbs sampling, MH algorithm - we run the
sampler for an “arbitrarily long” number of iterations

• And visually explored the traceplots

• i.e., checked that the sampled values seemed to reach a
“stable state”

• Visual inspection of trace plots is a first - informal - approach
to assesing convergence of the MCMC algorithm

Traceplots for different parameter draws

Informal approach to assessing convergence - checking
traceplots

• For a well-mixing, convergent parameter, simulated values
look almost vertical and dense

• stable values after burn-in (no trends)

• Not like this:

Formal approaches to assessing convergence

• Formal approaches to assessing convergence depend on
whether

1 We run a single MCMC - Gibbs sampler, MH algorithm - chain
for a very large number of iterations S

2 We run multiple - e.g., 3 - shorter MCMC chains

• In our previous examples we run a single chain

• we started the chain from a single initial value for each
parameter θ ∈ Θ

• drew S samples from Θ, generating a sequence Θ0,Θ1, . . . ,ΘS

• But 2 is arguably more common in practice

• e.g., running 3 chains, each one starting from different initial
values

• running each chain for S iterations

• pooling together the draws from each chain - upon
convergence - to compute means, variances, etc.

• In all cases, the usual practice is to:

• use the first few iterations of the single/multiple chains as
“burn-in”

• assess convergence using the sample draws from the chains
after the “burn-in” period

• In all cases, the usual practice is to:

• use the first few iterations of the single/multiple chains as
“burn-in”

• assess convergence using the sample draws from the chains
after the “burn-in” period

More formal convergence criteria - single chain

• Geweke’s criterion, Heidel’s criterion

• compare the sample draws from different parts of the chain,
after the burn-in period

• check that the values do not differ dramatically

• For instance, using Geweke’s criterion we would compare:

• the initial 10% of the samples (after burn-in)

• against the last 50% of the sampled values

• using a t-type of test

• “t-tests” outside the [-1.96, 1.96] range indicate lack of
convergence

More formal convergence criteria - single chain

• Geweke’s criterion, Heidel’s criterion

• compare the sample draws from different parts of the chain,
after the burn-in period

• check that the values do not differ dramatically

• For instance, using Geweke’s criterion we would compare:

• the initial 10% of the samples (after burn-in)

• against the last 50% of the sampled values

• using a t-type of test

• “t-tests” outside the [-1.96, 1.96] range indicate lack of
convergence

• Both the Geweke and Heidel criteria are readily available in
R

• “coda” package

• commands: geweke.diag, heidel.diag

• Application: “Heidel criterion for Gibbs sampling, Normal
distribution.R”

• Exercises:

1 Check convergence using Geweke’s criterion

2 Use both the Heidel and Geweke criteria to check converge of
the MH algorithm we used for ρ

More formal convergence criteria - multiple chains

• Gelman & Rubin’s R̂: compares the variability of sampled
values

• within each chain

• and between chains

• More specifically:

1 Computes the average samples of θ in each chain c ,
c = 1, 2, . . . ,C (e.g., C = 3)

θ̄c =

∑S
s=1 θ

s
c

S

2 Computes the average sampled values across chains:

θ̄ =

∑C
c=1 θ̄c
C

3 And from (1) and (2):

W =

∑C
c=1

∑S
s=1(θSc−θ̄c)2

S

C

B =

∑C
c=1(θ̄c − θ̄)2

S/(C − 1)

4 The convergence measure, R̂, is given by:

R̂ =
((S − 1)/S)W + B/S

W

5 Convergence: R̂ < 1.2

• “coda” package

• command: gelman.diag ‘

• Application: “Gelman-Rubin diagnostic for Gibbs sampling,
Normal distribution.R”

Assessing model fit in a Bayesian setting

• How to assess whether the model fits the data well?

• And how to compare two different models?

• No R2 or pseudo-R2: these are “frequentist” concepts

• Instead, Bayesians (e.g., Congdon (2009), Gelman (2007)) use
posterior predictive comparisons

p(yreplicated |yobserved) =

∫
p(yreplicated |yobserved , θ)p(θ|yobserved)dθ

Assessing model “fit” in a Bayesian setting (cont.)

• Posterior predictive comparisons:

1 simulate data from the estimated model parameters

2 compare against the observed data

3 use an overall fit measure to assess model fit

• Possible criteria to assess the posterior predictive comparisons:

• % of correct predictions

• whether the true data is in the 95% CI of the replicates

• deviance

• kurtosis, skewness (for normal data)

Example: Computing the % of correct predictions

• Application: “Posterior Predictions Probit.R”

• This script:

1 Fits a simple (non-hierarchical) probit model

2 Checks covergence

3 Reports posterior summaries (means, 95% highest posterior
density (HPD) intervals

4 And computes the % of correct predictions

• Exercise: Compute other measures of goodness of fit based on
the same model

Assessing model “fit” in a Bayesian setting (cont.)

• More formally, for each simulated value of the parameter s,
generate a replicated data set y sreplicated

• Choose a statistic D, and compare D(y sreplicated) against
D(yobserved)

• Quantify the discrepancy

• for instance, compute that % of correct predictions, or the
proportion of times that the replicated y is above/below the
“true” y

• compute a “Bayesian p-value”:

p = Pr
(
D(yreplicated) > D(yobserved)

)
• Systematic differences between replicate & actual data

indicate model limitations

Comparing different models

• Two main tools:

1 DIC : Deviance Information Criterion (most used)

• Information criterion (like AIC or BIC), but
specifically designed for MCMC simulations

• In a nutshell: compares the expected log likelihood
of the model against the likelihood at the posterior
parameter means

• Always select the model with the lowest DIC

• “Rule of thumb”: DIC differences larger than 3
provide overwhelming evidence in favor of the model
with the lower value (Ntzoufras 2011)

Comparing different models (cont.)

2 BF : Bayes factors (less used, but comes “with” Stata)

• Ratio of the likelihood of two models

• Higher BF means more likely that the model is
supported by the data

• BF > 10 provides strong evidence for the model with
higher value (Kass & Raftery 1995)

Speeding up Bayesian Computations

• Bayesian models may be quite slow to run

• This is probably their main disadvantage

• Various approaches to deal with this issue

• e.g., variational Bayesian inference, Hamiltonian Monte carlo

• But even MCMC algorithms can be accelerated

• We will mention 2 related approaches here

• Rcpp: integrating R with C++

• Rcpp + HPC

Integrating R with C++: Rcpp

• A first way to speed up MCMC algorithms is using Rcpp

• Rcpp allows “running C++ code” from R

• learning to code in C++ from scratch is difficult

• using Rcpp is much easier!

• Key reference: Eddelbuettel, Dirk. 2013. Seamless R and
C++ Integration with Rcpp. New York, NY: Springer.

Comparison - Logit model in R and Rcpp

• Look at the R file: “comparison logit.R”

• It compares the execution time of a Metropolis-Hastings
algorithm fitted using:

1 R

2 Rcpp

• On average, the “pure” R code takes almost 6 times as much
as the Rcpp code

Running Rcpp in the cluster

• To further accelerate execution, we can use an HPC cluster

• Exeter has the ISCA cluster avalailable:

• 128 GB nodes

• https://emps.exeter.ac.uk/computer-science/facilities/

• Key advantage for Bayesians: parallelization

• MCMC problems are “embarrasingly parallel”

• If we have multiple cores, we can “send each MCMC chain” to
a different core

• We don’t need an HPC cluster for parallelization

• multiple R packages do parallelization across clusters of the
same computer

• e.g., snow, doParallel

• However, typical desktop/laptop computer has 8 cores

• with 3 chains per job, this means we can efficiently run at
most 2 jobs in parallel

• With an HPC cluster, we can run tens/hundreds of
multi-chain MCMC algorithms in parallel

• And the cost of paralellization is minimal

• Compare

• “LogitRcpp.cpp”

• and “LogitRcppHPC.cpp”

• Cost: 5 more lines of code

• Benefit: Cut execution time in less than half

• And this is a very simple problem (1 job, 3 chains)

• Potential gains are huge!

Comparison of execution times

• Comparison: 100 replications (“estimations”) of each model

• Each model runs 3 MCMC chains of length 1,000

• See “comparison logit parallel.R”

Table: Execution Times (in nanoseconds)

Model Time Ratio

R 3,657.47 13.17

Rcpp 589.61 2.12

Rcpp in ISCA 277.60 1.00

Additional readings

1 Eddelbuettel (2013). Seamless R andC++ Integration with
Rcpp. New York, NY: Springer.

2 Gelman and Hill (2007): Data Analysis using Regression and
Multilevel/Hierarchical Models

3 Gill (2008): Bayesian Methods: A Social and Behavioral
Approach

4 Hahn, Eugene (2014): Bayesian Methods for Management
and Business - Pragmatic Solutions for Real Problems.

5 Jackman (2009): Bayesian Analysis for the Social Sciences

	Recap: The basics of Bayesian inference
	Applied Bayesian inference: A simple example
	Simulations and Monte Carlo integration
	
	Monte Carlo Integration

	MCMC simulation
	MCMC simulation: Gibbs sampler and Metropolis-Hastings

	Gibbs sampling
	Example - Practical application of Gibbs sampling
	

	Metropolis-Hastings algorithm
	Application of the MH algorithm - Example

	Combining Gibbs Sampler & Metropolis steps
	Assessing Convergence
	Goodness-of-fit criteria
	Speeding up Bayesian computations
	Rcpp
	Rcpp + HPC

