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Designs for Online Panels

	   Method	  of	  Respondent	  Selection	  

	   Probability	   Non-‐Probability	  

Internet	  users	   Nielsen	  TV/PC	  Panel	  	  	  	  RDD	  recruitment	  
Opt-‐in	  Web	  panels	  

River	  samples	  

All	  adults	  

GfK	  Knowledge	  Panel	  
	  	  	  RDD/ABS	  panel	  
Gallup	  Panel	  
	  	  	  Recontacts,	  mixed	  mode	  

	  

	  



What is a probability sample?



The real world



Are these probability samples?



The McCain Surge?
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Quota sampling



2004 Stanford Mode Study

SPSS/ Survey
SRBI KN Pooled River Greenfield Harris GoZing Direct SSI

Gender 1.4% 0.6% 0.0% 2.0% 2.9% 0.7% 3.8% 1.0% 1.0%
Age 2.6% 0.7% 2.3% 4.5% 13.3% 3.7% 35.6% 16.8% 13.8%
Race/Ethnicity 3.5% 0.5% 0.0% 10.9% 17.0% 0.3% 11.2% 13.7% 15.5%
Education 4.5% 1.5% 0.3% 20.7% 29.6% 1.1% 28.1% 25.9% 28.8%
Income 18.2% 5.4% 11.5% 13.5% 8.6% 3.0% 16.3% 12.4% 9.6%
Marital Status 9.0% 5.5% 5.3% 7.0% 7.1% 6.8% 15.4% 9.4% 8.7%
Number of Adults in HH 2.6% 7.3% 5.3% 9.2% 7.8% 3.9% 3.6% 7.1% 6.7%
Work for Pay Last Week 1.5% 2.2% 2.9% 0.5% 6.2% 0.9% 2.7% 5.1% 0.4%
Living Quarters 6.0% 2.4% 5.4% 7.5% 2.6% 3.2% 19.8% 2.9% 3.0%
Number of Bedrooms 6.4% 3.6% 2.0% 6.1% 1.7% 3.5% 5.4% 2.3% 2.7%
Number of Vehicles 4.9% 6.6% 4.6% 7.6% 6.9% 3.5% 6.7% 5.5% 5.5%

TABLE 1. The entries show the total variation distance between the various surveys and the 2008 American Com-
munity Survey (ACS). The opt-in samples were not balanced on either education or race. The pooled estimate is the
mean estimate based on samples of size 1,000 from the opt-in panels stratified by age, race, gender and education.
After post-stratification, the opt-in samples are slightly closer to the ACS estimates than either the RDD phone sample
(RDD) or the Knowledge Networks sample.
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Matched sampling



Obama Vote Share
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2008 State-level Results
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2010 State-level Results



2012 State-level Results



Empirical Sampling Distributions

ANES Internet

Standardized Error

−4 −2 0 2 4

Gallup

Standardized Error

−4 −2 0 2 4

Pew

Standardized Error

−4 −2 0 2 4

Matched

Standardized Error

−4 −2 0 2 4



Age

P
er

ce
nt

 V
ot

in
g 

fo
r 

O
ba

m
a

18−24 25−29 30−39 40−49 50−64 65+

40
50

60
70

80

● ●

●

●
●

●

40
50

60
70

80

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

Gallup/USA Today
NEP Exit Poll
ANES Time Series
ANES Internet Panel
CCES 2008



Gender

P
er

ce
nt

 V
ot

in
g 

fo
r 

O
ba

m
a

White Black Hispanic

30
40

50
60

70
80

90
10

0

●

●

●

30
40

50
60

70
80

90
10

0

●

●

●

●

●

●

●

●

●

●

●

●

ANES Time Series

Gallup/USA Today

NEP Exit Poll

ANES Internet Panel

CCES 2008



Gender

P
er

ce
nt

 V
ot

in
g 

fo
r 

O
ba

m
a

Male Female

30
40

50
60

70
80

●

●

30
40

50
60

70
80

●

●

●

●

●

●

●

●

Gallup/USA Today

ANES Time Series
CCES 2008
NEP Exit Poll
ANES Internet Panel



Income
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Comparison of 2012 YouGov and NEP Exit Poll

YouGov NEP

Obama Romney Obama Romney

Gender
Male 44% 53% 45% 52%
Female 55% 43% 55% 44%

Age
18-29 62% 34% 60% 37%
30-44 57% 40% 52% 45%
45-64 45% 53% 47% 51%
65+ 38% 61% 44% 56%

Race
White 41% 56% 39% 59%
Black 92% 7% 93% 6%
Hispanic 61% 37% 71% 27%



Notation

We draw a sample i = 1, . . . , n using SRS, where

Yi = survey measurements

Xi = covariates

Ri = selection indicator

The realized sample size is

nR =
n∑

i=1

Ri

The mean of Y in the realized sample is

ȲR =
1

nR

∑
I

Yi



Model

I (Xi ,Yi ,Ri ) are independently and identically distributed
(i.i.d.).

I X is discrete with population distribution P{X = x} = µ(x).

I Y is dichotomous with P{Y = 1|X = x} = θ(x).

I The parameter of interest is θ = P{Y = 1} =
∑

x µ(x)θ(x).

I The propensity score is π(x) = P{R = 1|X = x}.
I In probability sampling π(x) is known (from the design).

I In simple random sampling, π(x) is constant.

I The Horvitz-Thompson estimator ȲHT =
∑

R Yi/π(Xi ) is an
unbiased estimator of θ.

I What can we do when π(x) is unknown?



Ignorable Selection

The survey measurements are independent of sample
selection conditional upon the covariates.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! = ! ! = !, ! = 1 = !{! = !|! = !}!

Survey!
measurements!

Covariates!
!

Sample!selection!
!



Post-stratification

I The (unweighted) sample mean Ȳ = n−1
R

∑
R Yi is biased if

π(x) is not constant.

I The Horvitz-Thompson estimator cannot be computed when
π(x) is unknown.

I The post-stratification estimator

ȲPS =
1

nR

∑
R

WiYi

where Wi = W (Xi ) are the weights: W (x) = µ(x)/µ̂(x).

I By Bayes’ rule,

P{X = x |R = 1} ∝ P{X = x}P{R = 1|X = x} = µ(x)π(x)

so Wi is approximately proportional of 1/π(Xi ).

I If selection is ignorable, then ȲPS is unbiased conditional upon
the sample fractions µ̂.



Model-based Variance Estimates

I It can be shown that the (conditional) variance of ȲPS is

V (ȲPS|µ̂) =
1

n2R

∑
R

W 2
i V (Yi |Xi )

=
θ(1− θ)

nR

1

nR

∑
R

W 2
i

θ(Xi )[1− θ(Xi )]

θ(1− θ)

≈ V (Ȳ |nR)(1 + CV2)(1− R2
Y ·X )

where CV = SD(W )/W̄ is the coefficient of variation of the
weights and R2

Y ·X is the R2
Y ·X is the ratio of the variance of Y

between categories of X to the total variation of Y .

I Confidence intervals: ȲPS ± 1.96
√

V (ȲPS |µ̂) will have
approximately 95% coverage.



Non-random Selection with Ignorability

I For non-random samples, there is some probability π(x) of a
person with characteristics X = x being included in the
sample, but it is not known.

I Under the assumption of ignorability, the post-stratified
estimator is unbiased.

I Ignorability is an assumption—there are no guarantees!

I The same variance estimator is valid, so we can form valid
confidence intervals without knowing the selection
probabilities.

I If ignobility fails, then the variance calculation is still valid,
but the variance and mean square error are different.

I Ignorability can be tested when a probability sample is
available with the same covariates.



The Limits of Post-stratification
I If µ̂(x) is far from µ(x), then the weights will have a large

coefficient of variation, and the post-stratified estimator can
have a very large variance.

I Weights in excess of ten are common, and arbitrary trimming
is often employed to reduce variability (at the cost of
introducing bias).

I With purposive selection, we can choose µ̂(x) ≈ µ(x) so the
weights are nearly constant (similar to proportional allocation
in stratified sampling), reducing or eliminating the need for
post-stratification.

I Matching is an efficient computational algorithm for
implementing purposive selection when X is high-dimensional
or continuous.

I Rivers (2007) shows that matching on a single continuous
covariate introduces an error OP(1/n). Abadie and Imbens
(2007) have results for higher dimensions, though there is a
curse of dimensionality.


