What is the replication crisis and why does it matter? A Bayesian perspective

Mark Andrews & Thom Baguley

@xmjandrews @seriousstats

Nottingham Trent University

July 7, 2016
Research Methods Festival 2016
What is the replication crisis?

- The false positive rate in psychology may be as high as 2 in 3.
What is the replication crisis?

- The false positive rate in psychology may be as high as 2 in 3.
- The Open Science Collaboration (2015) conducted replications of 100 psychology studies that were published in 2008:
 - While 97% of the original studies were statistically significant, only 36% of the replications were significant.
 - The mean effect size of the replications were less than half the magnitude of the originals.
 - Only 39% of the studies were subjectively rated as having replicated the original result.
What is the replication crisis?

- The false positive rate in psychology may be as high as 2 in 3.
- The Open Science Collaboration (2015) conducted replications of 100 psychology studies that were published in 2008:
 - While 97% of the original studies were statistically significant, only 36% of the replications were significant.
 - The mean effect size of the replications were less than half the magnitude of the originals.
 - Only 39% of the studies were subjectively rated as having replicated the original result.
- Similar results were reported in Social Psychology (2014): Of 31 replication attempts, 12 (39%) were successful, and 16 were failures.
What is the replication crisis?

- The false positive rate in psychology may be as high as 2 in 3.
- The Open Science Collaboration (2015) conducted replications of 100 psychology studies that were published in 2008:
 - While 97% of the original studies were statistically significant, only 36% of the replications were significant.
 - The mean effect size of the replications were less than half the magnitude of the originals.
 - Only 39% of the studies were subjectively rated as having replicated the original result.
- Similar results were reported in Social Psychology (2014): Of 31 replication attempts, 12 (39%) were successful, and 16 were failures.
- … and in psychiatry (Tajika et al., 2015): Of 43 replication attempts, 16 (37%) were successful, 16 others directly contradicted the original, and 11 had substantially smaller effects.
A Simple Bayesian Model of False Discoveries

What is the probability that $H_0 = \text{True}$ given that $p \leq \alpha$?

Based on Ioannidis (2005).
What is the probability that $H_0 = \text{True}$ given that $p \leq \alpha$?

We know that $P(p \leq \alpha | H_0) \triangleq \alpha$, but what about $P(H_0 | p \leq \alpha)$?

\(^1\)Based on Ioannidis (2005).
What is the probability that $H_0 = \text{True}$ given that $p \leq \alpha$?

We know that $P(p \leq \alpha | H_0) \triangleq \alpha$, but what about $P(H_0 | p \leq \alpha)$?

$$P(H_0 | p \leq \alpha) = \frac{P(p \leq \alpha | H_0)P(H_0)}{P(p \leq \alpha | H_0)P(H_0) + P(p \leq \alpha | \neg H_0)P(\neg H_0)} = \frac{\alpha(1 - \lambda)}{\alpha(1 - \lambda) + \omega \lambda} = \frac{\alpha}{\alpha + \omega \frac{\lambda}{1 - \lambda}}$$

where α is the Type I error rate, ω is the power, and $\frac{\lambda}{1 - \lambda}$ is the prior odds that $\neg H_0$ is true1.

1Based on Ioannidis (2005).
The graph shows the probability of false discovery, $P(H_0 | p \leq \alpha)$, against $P(H_0)$ for three different values of ω: 0.33, 0.6, and 0.8. The curves indicate how the probability of false discovery increases with increasing $P(H_0)$ and different values of ω. The legend specifies the color coding for each curve, with green for $\omega = 0.33$, red for $\omega = 0.6$, and blue for $\omega = 0.8$. The graph highlights the relationship between the two variables for different levels of ω.
Probability of false discovery

When there are $K = 5$ multiplicities

![Graph showing the probability of false discovery for different ω values.](image-url)
A consequence of the replication crisis has been a demand for full-disclosure of scientific results.

Modelling the (raw) data from many heterogeneous studies is effectively hierarchical modelling.

Bayesian methods, and arguably only Bayesian methods, allow flexible modelling of such complex problems.
Bayesian Meta-Analysis and Meta-Science: Example
Bayesian Meta-Analysis and Meta-Science: Example

- We can model reaction time as a function of days without sleep with the following hierarchical model:

\[y_{ji} \sim \alpha_j + \beta_j x_{ji} + \epsilon_{ji}, \]
\[\alpha_j \sim N(a, \sigma_a^2), \quad \beta_j \sim N(b, \sigma_b^2) \]

- We can model the same phenomenon across \(K \) different experiments with

\[y_{ji}^k \sim \alpha_j^k + \beta_j^k x_{ji} + \epsilon_{ji}, \]
\[\alpha_j^k \sim N(a^k, \sigma_a^2), \quad \beta_j^k \sim N(b^k, \sigma_b^2), \]
\[a^k \sim N(a_0, \tau_a^2), \quad b^k \sim N(b_0, \tau_b^2). \]
Bayesian Models of Multiple Simultaneous Inference

- At the heart of the replication crisis is the problem of multiplicities (QRPs, garden of the forking paths, etc).
- We can model multiple simultaneous inference with a hierarchical prior on null-effects. For example,

\[y_i = \sum_{k=1}^{K} \lambda_k \beta_k x_{ki} + \epsilon_i \]

where \(\lambda_k \in \{0, 1\} \) is an indicator variable of non-null effects, and \(\prod_{k=1}^{K} P(\lambda_k | \eta) \) is a hierarchical prior on non-null effects.
Bayesian Models of Multiple Simultaneous Inference: Example

- We can discover which of K coins are biased, after N flips each, using the following model:

 \[y_k \sim \text{dbinom}(p_k, N), \]
 \[
 p_k = \begin{cases}
 \theta_k & \text{if } \lambda_k = 1 \\
 0.5 & \text{if } \lambda_k = 0,
 \end{cases}
 \]
 \[
 \theta_k \sim \text{dbeta}(\alpha, \beta),
 \]
 \[
 \lambda_k \sim \text{dbern}(\pi)
 \]

 where y_k is the observed number of Heads for coin k.

- Here, λ_k is a latent variable that indicates if the coin is biased or not.

- In simulations with $K = 100$ and $N = 100$, the false discovery rate ≈ 0.025, miss rate ≈ 0.075.
Conclusions

- What can Bayesian methods do for the replication crisis?
 - An understanding of discovery and the replication process.
 - More refined tools for research.
 - A more transparent research process.
References

